• Title/Summary/Keyword: New Words

검색결과 1,482건 처리시간 0.023초

Axial Power Distribution Calculation Using a Neural Network in the Nuclear Reactor Core

  • Kim, Y. H.;K. H. Cha;Lee, S. H.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.58-63
    • /
    • 1997
  • This paper is concerned with an algorithm based on neural networks to calculate the axial power distribution using excore defector signals in the nuclear reactor core. The fundamental basis of the algorithm is that the detector response can be fairly accurately estimated using computational codes. In other words, the training set, which represents relationship between detector signals and axial power distributions, for the neural network can be obtained through calculations instead of measurements. Application of the new method to the Yonggwang nuclear power plant unit 3 (YGN-3) shows that it is superior to the current algorithm in place.

  • PDF

단어 단위의 추정 정렬을 통한 영-한 대역어의 자동 추출 (An Automatic Extraction of English-Korean Bilingual Terms by Using Word-level Presumptive Alignment)

  • 이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권6호
    • /
    • pp.433-442
    • /
    • 2013
  • 기계번역 시스템 구축에 가장 필수적인 요소는 번역하고자 하는 언어간의 단어쌍을 담고 있는 대역어 사전이다. 대역어 사전은 기계번역뿐만 아니라 서로 다른 언어간의 정보를 교환하는 모든 응용프로그램의 필수적인 지식원(knowledge source)이다. 본 연구에서는 문서 단위로 정렬된 병렬 코퍼스와 기본적인 대역어 사전을 이용하여 영-한 대역어를 자동으로 추출하는 방법에 대해 소개한다. 이 방법은 수집된 병렬 코퍼스의 크기에 영향을 받지 않는 방법이다. 문서 단위로 정렬된 병렬 코퍼스로부터 문장 단위의 정렬을 수행하고 다시 단어 단위의 정렬을 수행한 후, 정렬이 채 되지 않은 부분에 대해 추정 정렬을 수행한다. 추정 정렬에는 문장에서의 위치, 다른 단어와의 관계, 두 언어간의 언어적 정보등 다양한 정보가 사용된다. 이렇게 추정 정렬된 단어쌍으로부터 영-한 대역어를 추출할 수 있다. 약 1,000개로 구성된 병렬 코퍼스로부터 추출한 영-한 대역어는 71.7%의 정확도를 얻을 수 있었다.

국내외 패션 저널에 나타난 한국적 패션 기사내용 분석 (Content Analysis of Articles of Korean Fashion in Domestic and Foreign Fashion Journals)

  • 음정선;유영선
    • 한국의류학회지
    • /
    • 제36권1호
    • /
    • pp.27-35
    • /
    • 2012
  • This study locates typical Korean fashion images in domestic and foreign fashion journals to advance Korea's international image in contemporary global fashion markets. The investigation of the frequency of articles and their types (so as to inquire into interest in Korean fashion in the global fashion markets) showed that for the appearance frequency of domestic articles studied, a good number of articles were published in the first half of 2008 and in 2009. In the case of foreign articles, the number of them increased from the second half of 2008 and the majority of articles were shown in the first half of 2010. Second, the investigation of the appearance features by article type studied in order to understand how Korean fashion played a role in the world's markets. The majority of articles were related to fashion brands that entered Chinese market in fashion brand articles in the case of domestic articles; however, many foreign articles introduced designers that participated in global fashion collections in Paris and New York. Third, as a result of analyzing typical key words by article type in order to find key words which could enhance Korea's fashion national image representing, we could confirm that 'Korean designers' can be a typical key words to represent Korean fashion. The key word most exposed in both domestic and foreign articles was 'designer Lie Sang Bong' and only his articles contained the content about influential Korean design materials.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권10호
    • /
    • pp.87-94
    • /
    • 2020
  • 블로그나 SNS 피드 등의 소셜 리뷰는 고객 관점의 의견이나 불만 사항을 반영한 키워드를 추출하기 위한 목적으로 광범위하게 활용되고 있으며, 최근 트렌드를 반영한 신조어나 고유명사를 포함하는 경우가 많다. 이들 단어는 사전에 포함되어 있지 않아 기존 형태소 분석기가 잘 인지하지 못하는 경우가 많으며, 동시에 상당한 처리 시간이 소요되어 키워드 분석 결과를 실시간으로 제공하는데 어려움이 있다. 본 논문에서는 응집도 점수 개념을 기반으로 소셜 리뷰로부터 키워드를 효율적으로 추출하기 위한 방법을 제안한다. 응집도 점수는 단어의 빈도수를 기반으로 계산되어 별도의 사전이 필요없다는 장점이 있으나, 띄어쓰기가 되지 않은 입력 데이터에 대해서는 정확도가 떨어질 수 있다. 이와 관련하여 본 논문에서는 단어 트리 구조를 이용하여 기존의 응집도 점수 계산 방법을 개선한 알고리즘을 제시한다. 또한 실험을 통해 제안하는 방법이 15.5%의 오류율을 보이는 동시에, 1,000개의 리뷰를 처리하는데 0.008초 정도 소요됨을 확인하였다.

워드 임베딩과 유의어를 활용한 단어 의미 범주 할당 (Assignment Semantic Category of a Word using Word Embedding and Synonyms)

  • 박다솔;차정원
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.946-953
    • /
    • 2017
  • 의미역 결정은 서술어와 논항들 사이의 의미 관계를 결정하는 문제이다. 의미역 결정을 위해 의미 논항 역할 정보와 의미 범주 정보를 사용해야 한다. 세종 전자사전은 의미역을 결정하는데 사용한 격틀 정보가 포함되어 있다. 본 논문에서는 워드 임베딩과 유의어를 활용하여 세종 전자사전을 확장하는 방법을 제시한다. 연관 단어가 유사한 벡터 표현을 갖도록 하기 위해 유의어 사전의 정보를 사용하여 재구성된 벡터를 생성한다. 기존의 워드 임베딩과 재구성된 벡터를 사용하여 동일한 실험을 진행한다. 워드 임베딩을 이용한 벡터로 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%이다. 재구성된 벡터를 이용한 단어의 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 33.33%이고, 확장한 의미 범주 할당의 시스템 성능은 53.88%이다. 의미 범주가 할당되지 않은 새로운 단어에 대해서 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구 (Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS)

  • 이종화
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권3호
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

감정점수의 전파를 통한 한국어 감정사전 생성 (Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation)

  • 박호민;김창현;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 2020
  • 감정분석은 문서 또는 대화상에서 주어진 주제에 대한 태도와 의견을 이해하는 과정이다. 감정분석에는 다양한 접근법이 있다. 그 중 하나는 감정사전을 이용하는 사전 기반 접근법이다. 본 논문에서는 널리 알려진 영어 감정사전인 VADER를 활용하여 한국어 감정사전을 자동으로 생성하는 방법을 제안한다. 제안된 방법은 세 단계로 구성된다. 첫 번째 단계는 한영 병렬 말뭉치를 사용하여 한영 이중언어 사전을 제작한다. 제작된 이중언어 사전은 VADER 감정어와 한국어 형태소 쌍들의 집합이다. 두 번째 단계는 그 이중언어 사전을 사용하여 한영 단어 그래프를 생성한다. 세 번째 단계는 생성된 단어 그래프 상에서 레이블 전파 알고리즘을 실행하여 새로운 감정사전을 구축한다. 이와 같은 과정으로 생성된 한국어 감정사전을 유용성을 보이려고 몇 가지 실험을 수행하였다. 본 논문에서 생성된 감정사전을 이용한 감정 분류기가 기존의 기계학습 기반 감정분류기보다 좋은 성능을 보였다. 앞으로 본 논문에서 제안된 방법을 적용하여 여러 언어의 감정사전을 생성하려고 한다.

텍스트마이닝 방법론을 활용한 웨어러블 관련 키워드의 트렌드 분석 (Analyzing the Trend of Wearable Keywords using Text-mining Methodology)

  • 김민정
    • 디지털융복합연구
    • /
    • 제18권9호
    • /
    • pp.181-190
    • /
    • 2020
  • 본 연구는 신문기사로부터 수집한 웨어러블 관련 텍스트를 대상으로 텍스트마이닝을 수행하여 웨어러블 관련 키워드의 트렌드를 분석하였다. 이를 위해 1992년부터 2019년까지 신문기사 11,952건을 수집하여 빈도분석과 바이그램 분석을 적용하였다. 빈도분석 결과 삼성전자, LG전자, 애플이 최상위 빈도어로 추출되었으며 스마트워치, 스마트밴드가 기기 측면에서 지속적으로 등장하였음을 알 수 있었다. 또한 IT전시회가 매년 고빈도어로 나타났으며 차세대 기술 관련 키워드와 융합된 내용이 기사화되는 것을 볼 수 있었다. 바이그램 분석 결과, 세계-최초, 세계-최대 같은 단어 묶음이 지속적으로 등장하였으며 이슈나 이벤트가 발생할 때마다 관련된 새로운 단어 묶음이 도출됨을 확인할 수 있었다. 이러한 웨어러블 관련 키워드의 트렌드 추이 파악은 웨어러블 동향과 향후 방향성을 이해하는데 유용할 것이다.

LSA를 이용한 문장 상호 추천과 문장 성향 분석을 통한 문서 요약 (Document Summarization Using Mutual Recommendation with LSA and Sense Analysis)

  • 이동욱;백서현;박민지;박진희;정혜욱;이지형
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.656-662
    • /
    • 2012
  • 본 논문에서는 그래프기반 문장랭킹 방식인 문장 상호 추천과 문장의 주관, 객관 성향을 이용하는 문장 성향 분석을 혼합한 새로운 요약문 추출 방법에 대해서 기술한다. 문장 상호 추천에서는 문장을 단어벡터로 변환한 후에 LSA를 이용하여 문장과 문장 사이의 유사도 점수를 계산하였다. 이렇게 얻어진 유사도와 각 단어의 희귀도(Rarity Score)를 기반으로 문장과 문장 사이의 연결 강도를 정의하여, 그래프 기반 문장 랭킹 방식을 적용 하였다. 한편, 문장성향 분석에서는 주관, 객관 성향을 결정하기 위해서 기존의 Golden Standard 단어 성향 분류를 기반으로 워드넷을 확장하여 데이터베이스를 구축하였다. 이를 통해 각 단어들의 성향을 판단하고 단어들의 평균 성향을 문장의 전체 성향에 반영하여, 주관적 성향을 띄는 문장들을 선택하였다. 최종적으로 문장 상호 추천 결과와 문장 성향 분석 결과를 혼합하여 주어진 문서로부터 요약문을 추출하였다. 요약문 추출 기능의 객관적인 성능 평가를 위하여 추출된 요약문 토대로 한 분류게임을 실시하였고, 그 결과를 MS-Word에 포함된 문서 요약 기능과 비교함으로써, 제안한 모델의 효과성을 확인하였다.

효율적인 검색 인터페이스를 위한 웹 기반 컴퓨터 용어사전의 설계 및 구현 (Design and Implementation of Web-Based Dictionary of Computing for Efficient Search Interface)

  • 황병연;박성철
    • 정보처리학회논문지D
    • /
    • 제9D권3호
    • /
    • pp.457-466
    • /
    • 2002
  • 본 논문에서는 인터넷을 통해 실시간으로 항상 최신의 컴퓨터 용어 검색 서비스를 제공할 수 있는 웹을 기반으로 한 컴퓨터 용어 사전을 설계하고 구현하였다. 본 용어사전은 FOLDOC(Free On-Line Dictionary Of Computing)의 사전을 기본으로 영문 해설을 제공하고 각 용어에 대해 한 명 이상의 번역자가 번역할 수 있도록 함으로써 기존 컴퓨터 사전에서 제공하지 않는 기능을 추가하였다. 그리고 SQL Server DBMS와 SQL을 이용한 다양한 검색 인터페이스(입력 문자로 시작하는 용어 검색, 입력 문자가 해설에 들어간 용어 검색 등)를 제공함으로써 적은 정보만으로도 원하는 용어를 검색할 수 있게 하였다. 본 컴퓨터 용어 사전의 성능 평가를 위해서 FOLDOC Mirror Site의 로그를 분석하여 CPU 부하율을 측정하였다. 실험 결과 본 컴퓨터 용어 사전은 최대 1780여명 이상의 동시 사용자를 수용할 수 있다는 결론을 얻었다.