• Title/Summary/Keyword: New Technology

Search Result 30,507, Processing Time 0.06 seconds

An Empirical Study on the Effects of Venture Company's Website Properties on Bounce Rate (벤처기업 웹사이트의 속성이 웹사이트 이탈률에 미치는 영향에 관한 실증연구)

  • Yun Do Hwang;Tae Kwan Ha
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.67-79
    • /
    • 2023
  • The bounce rate is the rate at which a user leaves immediately after visiting, and this study aimed to find out what attributes of a website affect the bounce rate. Web site evaluation items were defined as a total of 4 items and 27 evaluation attributes, including usability, information, service interaction, and technology, so that they can be commonly applied to venture companies in various industries through prior research. As a result of the study, 6 website attributes that affect the bounce rate were verified to be significant by discriminant analysis and decision tree analysis. Suggestions to reduce the bounce rate of venture business websites through this study are as follows. First, the path name of the website is displayed as mandatory and a pull-down menu function is added to facilitate movement to other pages. Second, it is good to expose core content that can attract users' attention in the form of a banner, and place internal link banners in the right place on sub-pages. Third, external links should be linked to a new window so that they do not leave the current page immediately so that they can be re-entered. Lastly, it is recommended to expose the contact information of the person in charge and consultation function as direct information for communication with customers, but if individual response is difficult, at least the consultation function must be added. These suggestions are expected to be of practical help in various fields such as website development, operation, and marketing. However, in special cases, a high bounce rate may be normal, so it should be considered according to the situation.

  • PDF

Voice Synthesis Detection Using Language Model-Based Speech Feature Extraction (언어 모델 기반 음성 특징 추출을 활용한 생성 음성 탐지)

  • Seung-min Kim;So-hee Park;Dae-seon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.439-449
    • /
    • 2024
  • Recent rapid advancements in voice generation technology have enabled the natural synthesis of voices using text alone. However, this progress has led to an increase in malicious activities, such as voice phishing (voishing), where generated voices are exploited for criminal purposes. Numerous models have been developed to detect the presence of synthesized voices, typically by extracting features from the voice and using these features to determine the likelihood of voice generation.This paper proposes a new model for extracting voice features to address misuse cases arising from generated voices. It utilizes a deep learning-based audio codec model and the pre-trained natural language processing model BERT to extract novel voice features. To assess the suitability of the proposed voice feature extraction model for voice detection, four generated voice detection models were created using the extracted features, and performance evaluations were conducted. For performance comparison, three voice detection models based on Deepfeature proposed in previous studies were evaluated against other models in terms of accuracy and EER. The model proposed in this paper achieved an accuracy of 88.08%and a low EER of 11.79%, outperforming the existing models. These results confirm that the voice feature extraction method introduced in this paper can be an effective tool for distinguishing between generated and real voices.

Added Value of Chemical Exchange-Dependent Saturation Transfer MRI for the Diagnosis of Dementia

  • Jang-Hoon Oh;Bo Guem Choi;Hak Young Rhee;Jin San Lee;Kyung Mi Lee;Soonchan Park;Ah Rang Cho;Chang-Woo Ryu;Key Chung Park;Eui Jong Kim;Geon-Ho Jahng
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.770-781
    • /
    • 2021
  • Objective: Chemical exchange-dependent saturation transfer (CEST) MRI is sensitive for detecting solid-like proteins and may detect changes in the levels of mobile proteins and peptides in tissues. The objective of this study was to evaluate the characteristics of chemical exchange proton pools using the CEST MRI technique in patients with dementia. Materials and Methods: Our institutional review board approved this cross-sectional prospective study and informed consent was obtained from all participants. This study included 41 subjects (19 with dementia and 22 without dementia). Complete CEST data of the brain were obtained using a three-dimensional gradient and spin-echo sequence to map CEST indices, such as amide, amine, hydroxyl, and magnetization transfer ratio asymmetry (MTRasym) values, using six-pool Lorentzian fitting. Statistical analyses of CEST indices were performed to evaluate group comparisons, their correlations with gray matter volume (GMV) and Mini-Mental State Examination (MMSE) scores, and receiver operating characteristic (ROC) curves. Results: Amine signals (0.029 for non-dementia, 0.046 for dementia, p = 0.011 at hippocampus) and MTRasym values at 3 ppm (0.748 for non-dementia, 1.138 for dementia, p = 0.022 at hippocampus), and 3.5 ppm (0.463 for non-dementia, 0.875 for dementia, p = 0.029 at hippocampus) were significantly higher in the dementia group than in the non-dementia group. Most CEST indices were not significantly correlated with GMV; however, except amide, most indices were significantly correlated with the MMSE scores. The classification power of most CEST indices was lower than that of GMV but adding one of the CEST indices in GMV improved the classification between the subject groups. The largest improvement was seen in the MTRasym values at 2 ppm in the anterior cingulate (area under the ROC curve = 0.981), with a sensitivity of 100 and a specificity of 90.91. Conclusion: CEST MRI potentially allows noninvasive image alterations in the Alzheimer's disease brain without injecting isotopes for monitoring different disease states and may provide a new imaging biomarker in the future.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

A Research on RC3(RMF-CMMC Common Compliance) meta-model development in preparation for Defense Cybersecurity (국방 사이버보안을 위한 RMF-CMMC 공통규정준수 메타모델 개발방안 연구)

  • Jae-yoon Hwang;Hyuk-jin Kwon
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.123-136
    • /
    • 2024
  • The U.S. Department of Defense, leading global cybersecurity policies, has two main cybersecurity frameworks: the Cybersecurity Maturity Model Certification (CMMC) for external defense industry certification, and the Risk Management Framework (RMF) for internal organizational security assessments. For Republic of Korea military, starting from 2026, the Korean version of RMF (K-RMF) will be fully implemented. Domestic defense industry companies participating in projects commissioned by the U.S. Department of Defense must obtain CMMC certification by October 2025. In this paper, a new standard compliance meta-model (R3C) development methodology that can simultaneously support CMMC and RMF security audit readiness tasks is introduced, along with the implementation results of a compliance solution based on the R3C meta-model. This research is based on practical experience with the U.S. Department of Defense's cybersecurity regulations gained during the joint project by the South Korean and U.S. defense ministries' joint chiefs of staff since 2022. The developed compliance solution functions are being utilized in joint South Korean-U.S. military exercises. The compliance solution developed through this research is expected to be available for sale in the private sector and is anticipated to be highly valuable for domestic defense industry companies that need immediate CMMC certification.

Investigating the Restructuring of Artificial Intelligence Curriculum in Specialized High Schools Following AI Department Reorganization (특성화고 인공지능학과 개편에 따른 인공지능 교육과정 개편 방안 연구)

  • EunHee Goo
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.41-49
    • /
    • 2024
  • The advancement of artificial intelligence on a global scale is significantly transforming life. In the field of education, there is a strong emphasis on actively utilizing AI and fostering creatively integrated talents with diverse knowledge. In alignment with this trend, there is a paradigm shift in AI education across primary, middle, high school, as well as university and graduate education. Leading AI schools and specialized high schools are dedicated to enhancing students' AI capabilities, while universities integrate AI into software courses or establish new AI departments to nurture talent. In AI-integrated education graduate programs, national efforts are underway to educate instructors from various disciplines on applying AI technology to the curriculum. In this context, specialized high schools are also restructuring their departments to cultivate technological talent in AI, tailored to students' characteristics and career paths. While the current education focuses primarily on the fundamental concepts and technologies of AI, there is a need to address the aspect of developing practical problem-solving skills. Therefore, this research aims to compare and analyze essential educational courses in AI-leading schools, AI-integrated high schools, AI high schools, university AI departments, and AI-integrated education graduate programs. The goal is to propose the necessary educational courses for AI education in specialized high schools, with the expectation that a more advanced curriculum in AI education can be established in specialized high schools through this effort.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

Exploratory Study on Enhancing Cyber Security for Busan Port Container Terminals (부산항 컨테이너 터미널 사이버 보안 강화를 위한 탐색적 연구)

  • Do-Yeon Ha;Yul-Seong Kim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.437-447
    • /
    • 2023
  • By actively adopting technologies from the Fourth Industrial Revolution, the port industry is trending toward new types of ports, such as automated and smart ports. However, behind the development of these ports, there is an increasing risk of cyber security incidents and threats within ports and container terminals, including information leakage through cargo handling equipment and ransomware attacks leading to disruptions in terminal operations. Despite the necessity of research to enhance cyber security within ports, there is a lack of such studies in the domestic context. This study focuses on Busan Port, a representative port in South Korea that actively incorporates technology from the Fourth Industrial Revolution, in order to discover variables for improving cyber security in container terminals. The research results categorized factors for enhancing cyber security in Busan Port's container terminals into network construction and policy support, standardization of education and personnel training, and legal and regulatory factors. Subsequently, multiple regression analysis was conducted based on these factors, leading to the identification of detailed factors for securing and enhancing safety, reliability, performance, and satisfaction in Busan Port's container terminals. The significance of this study lies in providing direction for enhancing cyber security in Busan Port's container terminals and addressing the increasing incidents of cyber security attacks within ports and container terminals.

The Evolution of Innovation Theory: From Schumpeter to Transition Theory (기술혁신이론의 진화: 슘페터에서 전환이론까지)

  • Sunyang Chung;Jiyoon Chung
    • Journal of Technology Innovation
    • /
    • v.31 no.3
    • /
    • pp.75-110
    • /
    • 2023
  • This paper aims at discussing the evolution of innovation theory from the beginning of the last century to present. Innovation theory has begun by Joseph Schumpeter in the beginning of the last century and his theory had not attained much attention compared to the mainstream economic theory. In the 1960s, some neo-classical economists analyzed the effect of technological change on economic growth and emphasized the role of demand in innovation process. However, in the beginning of the 1970s, Schumpeter's innovation theory, which emphasized the role of innovation and entrepreneurship in economic and social development, attained enormous attention by many liberal economists. They were called neo-Schumpeterians as they followed the theories and ideas of Schumpeter. In the middle of the 1980s, neo-Schumpeterians identified the concept of national innovation system(NIS), which is the total mobilization system of innovation resources for generating, appropriating and diffusing technological innovations. Soon this theory diffused very quickly at regional and sectoral level. As a result, there have been very active empirical studies on innovation systems in the world. Since the beginning of the 2000s the transition study have been actively carried out mainly in European countries. This study emphasizes the transition of existing innovation systems into more sustainable ones. In Korea we need to activate transition study, because there have been only few studies in this new theory.

LDA Topic Modeling and Recommendation of Similar Patent Document Using Word2vec (LDA 토픽 모델링과 Word2vec을 활용한 유사 특허문서 추천연구)

  • Apgil Lee;Keunho Choi;Gunwoo Kim
    • Information Systems Review
    • /
    • v.22 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • With the start of the fourth industrial revolution era, technologies of various fields are merged and new types of technologies and products are being developed. In addition, the importance of the registration of intellectual property rights and patent registration to gain market dominance of them is increasing in oversea as well as in domestic. Accordingly, the number of patents to be processed per examiner is increasing every year, so time and cost for prior art research are increasing. Therefore, a number of researches have been carried out to reduce examination time and cost for patent-pending technology. This paper proposes a method to calculate the degree of similarity among patent documents of the same priority claim when a plurality of patent rights priority claims are filed and to provide them to the examiner and the patent applicant. To this end, we preprocessed the data of the existing irregular patent documents, used Word2vec to obtain similarity between patent documents, and then proposed recommendation model that recommends a similar patent document in descending order of score. This makes it possible to promptly refer to the examination history of patent documents judged to be similar at the time of examination by the examiner, thereby reducing the burden of work and enabling efficient search in the applicant's prior art research. We expect it will contribute greatly.