• Title/Summary/Keyword: Neutral Current

Search Result 485, Processing Time 0.021 seconds

Neutral Current Calculation of the One Step Type Pole using KEPCO's Distribution System (한전 실 배전계통 모델을 이용한 1단 장주 중성선 전류 계산)

  • Seo, H.C.;Park, K.W.;Kim, C.H.;Jung, C.S.;Yoo, Y.P.;Lim, Y.H.;Seol, I.H.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The one step type and two step type pole are used in distribution line. If the three phases are not balanced, the communication line can be damaged by induced voltage. This paper calculates the neutral current using KEPCO's distribution system model which is only composed by one step type pole. The used system model is modelled by using ATPDraw and the neutral current is calculated by using EMTP/MODELS. Many cases for abstracting the neutral current characteristics in KEPCO's distribution system are simulated and analyzed.

The Effect by Grounding Resistance of the ground Fault in the 22.9[kV] Multi-ground Distribution System (22.9[kV] 다중접지 배전계통에서 고장전류의 접지저항 영향 분석)

  • Jung, Kum-Young;Choi, Sun-Kyu;Shim, Keon-Bo;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.85-89
    • /
    • 2010
  • During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multi-grounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A effect by grounding resistance of poles of ground fault current in the 22.9[kV] multi-ground distribution system. by field tests.

Neutral Line Current Analysis of Three-phase Four-wire Power System (3상 4선식 전력 시스템의 중성선 전류 분석)

  • Min Joon-Ki;Kim Hyng-Chul;Kim Su-Chel;Choi Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.492-494
    • /
    • 2006
  • Neutral line current is analyzed by the neutral line CF in nonlinear load balanced and unbalanced conditions. The worst nonlinear load condition is nonlinear balanced load condition, and It is below CFNL=1.194 that a neutral line current could not excess the rated value

  • PDF

Neutral Current Calculation of Pole-Top Overhead Distribution Line (가공 배전선로 장주의 중성선 전류 계산)

  • Seo, Hun-Chul;Kwon, O-Sang;Kim, Chul-Hwan;Jung, Chang-Soo;Yoo, Yeon-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.7
    • /
    • pp.290-296
    • /
    • 2006
  • If the three phases are not balanced, the current in neutral wire is not zero. Then, the induced voltage can be generated in communication line. The KEPCO's rule about unbalanced current for one step type in distribution pole is a twenty percent of phase current. But the unbalanced current for two step type in distribution pole can't decide the rule because there are many different views. This paper presents the calculation and analysis technique of neutral current in distribution poles using equivalent circuit analysis and EMTP simulation.

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Neutral Current Reduction Method Using Single-Phase Inverter (단상 인버터를 사용한 중성선 전류 저감 기법)

  • Min, Joon-Ki;Kim, Hyo-Sung;Choi, Jao-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.155-157
    • /
    • 2005
  • This paper analyzed the adoption possibility of a low cost single phase active power filter as the neutral current reduction device in three-phase four-wire power system with the balanced or/and unbalnaced nonlinear load conditions. Proposed system can make neutral line current to within rated vale without the phase current THD change of the installed phase line.

  • PDF

Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System (지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Jang, Seong-Whan;Kim, Yong-Kap;Kwon, Shin-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.

A Study on the Problems of the Neutral Line Due to the 3rd Harmonic (중성선 공용시 3배수 고조파에 따른 문제점 분석)

  • Cho, Nam-Hun;Jung, Jum-Soo;Park, Yong-Woo;Ha, Bok-Nam;Lee, Heung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.76-83
    • /
    • 2008
  • The neutral current is made of both the load unbalanced current and the 3rd harmonic. The 3rd harmonic which is the source of the main neutral current is generated from the loads using bridge rectifier circuits on their input produce currents. TV, computer and monitor which are belong to IEC 61000-3-2 Class D are the main 3rd harmonic current sources. In order to show the affect of the distribution system by these disturbances, this paper has studied the current standards of the Korea Electric and considers the problem of the neutral common.

A Study on the Effects of Neutral Current by Unbalanced Load in Two Step Type Pole using KEPCO's Distribution System (한전 배전 계통을 이용한 2단장주의 불평형 부하에 따른 중성선 전류의 영향에 관한 연구)

  • Park, K.W.;Seo, H.C.;Kim, C.H.;Jung, C.S.;Yoo, Y.P.;Lim, Y.H.;Lee, W.J.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.465-471
    • /
    • 2007
  • The one step type pole and two step type pole are used in KEPCO's distribution system. The neutral current increases in three-phase four-wire distribution system due to unbalanced load. Usually, power line and communication line are installed at contiguity by effect of topography in Korea. To this end, the damages such as electrostatic induction, electromagnetic induction and harmonic induction generated by induced voltage and current are occured in power line and communication line. This paper calculates the neutral current in KEPCO's distribution system using EMTP by composing various simulated conditions. Also, these results are verified by vector analysis.

Analysis of Neutral Point Current in T-Type Three-Level PWM Converter (T-type 3-레벨 PWM 컨버터의 중성점 전류 분석)

  • Lee, Kui-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.68-71
    • /
    • 2020
  • As a T-type three-level PWM converter has several intrinsic advantages, it has been widely studied for many applications. However, it requires an additional voltage control loop for balancing each DC link voltage. Generally, satisfying this requirement involves the use of an offset voltage to provide a neutral point current without affecting other variables, such as the total DC link voltage and three-phase input current. In this study, the theoretical relationship between the offset voltage and the neutral point current is analyzed. The results can be beneficial for effective voltage balancing controller design. The effectiveness of the analytical modeling is verified by simulation and experimental results.