• Title/Summary/Keyword: Neurotransmitter transporter

Search Result 16, Processing Time 0.023 seconds

Radiopharmaceuticals for Neurotransmitter Imaging (뇌 신경물질 운반체 영상용 방사성의약품)

  • Oh, Seung-Jun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.118-131
    • /
    • 2007
  • Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin trnasporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmcaeuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with $[^{123}I]{\beta}-CIT$, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, $[^{123}I]PE2I$, [18F]FE-CNT, $[^{123}I]FP-CIT$ and $[^{18}F]FP-CIT$ were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. $[^{11}C]McN$ 5652 was developed for serotonin trnasporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, $[^{11}C]AFM$ and $[^{11}C]DASB$ showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuitcals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.

Radiotracers for Functional Neuroimaging (기능성 신경영상화를 위한 방사성추적자)

  • Lee, Byung-Chul;Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • After the development of two major techniques - SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) to image the human subjects in a three-dimensional direction in the 1980s, many radiotracers have been used for functional neuroimaging. Still it would be very important study to develop selective radiotracers for functional neuroimaging. New radiotracers will help to expand the knowledge of neurotransmitter systems and of the genetic contribution to receptor or transporter availability. Neurotransmitter depletion-restoration studies, the distribution of brain functions and their modulation by neurotransmitter system aid in better understanding and limiting the side effects of drugs used as well as newly developed. In audition, these radiotracers will be thus very useful to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the introduction of radioligands for the functional neuroimaging. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.

Design, Synthesis, and Functional Evaluation of 1, 5-Disubstituted Tetrazoles as Monoamine Neurotransmitter Reuptake Inhibitors

  • Paudel, Suresh;Wang, Shuji;Kim, Eunae;Kundu, Dooti;Min, Xiao;Shin, Chan Young;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.191-202
    • /
    • 2022
  • Tetrazoles were designed and synthesized as potential inhibitors of triple monoamine neurotransmitters (dopamine, norepinephrine, serotonin) reuptake based on the functional and docking simulation of compound 6 which were performed in a previous study. The compound structure consisted of a tetrazole-linker (n)-piperidine/piperazine-spacer (m)-phenyl ring, with tetrazole attached to two phenyl rings (R1 and R2). Altering the carbon number in the linker (n) from 3 to 4 and in the spacer (m) from 0 to 1 increased the potency of serotonin reuptake inhibition. Depending on the nature of piperidine/piperazine, the substituents at R1 and R2 exerted various effects in determining their inhibitory effects on monoamine reuptake. Docking study showed that the selectivity of tetrazole for different transporters was determined based on multiple interactions with various residues on transporters, including hydrophobic residues on transmembrane domains 1, 3, 6, and 8. Co-expression of dopamine transporter, which lowers dopamine concentration in the biophase by uptaking dopamine into the cells, inhibited the dopamine-induced endoctytosis of dopamine D2 receptor. When tested for compound 40 and 56, compound 40 which has more potent inhibitory activity on dopamine reuptake more strongly disinhibited the inhibitory activity of dopamine transporter on the endocytosis of dopamine D2 receptor. Overall, we identified candidate inhibitors of triple monoamine neurotransmitter reuptake and provided a theoretical background for identifying such neurotransmitter modifiers for developing novel therapeutic agents of various neuropsychiatric disorders.

Sodium/chloride-Dependent Transporters: Elucidation of Their Properties Using the Dopamine Transporter

  • Caron, Marc G.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.88-93
    • /
    • 1994
  • The mechanisms controlling the intensity and duration of synaptic transmission are numerous. Once an action potential reaches a nerve terminal, the stored neurotransmitters are released in a quantum fashion into the synaptic cleft. At that point neurotransmitters can act on post-synaptic receptors to elicit an action on the post-synaptic cell or net at so-called auto-receptors that are located on the presynaptic side and which often regulate the further release of the neutotransmitter. Whereas the action of the neurotransmitter receptors is regulated by desensitization phenomenon, the major mechanism by which the intensity and duration of neurotransmitter action is presumably regulated by either its degradation or its removal from the synaptic cleft. In the central nervous system, specialized proteins located in fe plasma membrane of presynaptic terminals function to rapidly remove neurotransmitters from the synaptic cleft in a sodium chloride-dependent fashion. These proteins have been referred to as uptake sites or neurotransmitter transporters. Once taken up by the plasma membrane transporters, neurotransmitters are repackaged into secretory vesicles by distinct transporters which depend on a proton gradient.

  • PDF

The Design and Synthesis of 1,4-Substituted Piperazine Derivatives as Triple Reuptake Inhibitors

  • Han, Min-Soo;Han, Young-Hue;Song, Chi-Man;Hahn, Hoh-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2597-2602
    • /
    • 2012
  • Novel 1,4-substituted piperazine derivatives 5, Series A and B were designed by fragment analysis and molecular modification of 4 selected piperazine-containing compounds which possess antidepressant activity. We synthesized new 39 analogues of Series A and 10 compounds of Series B, respectively. The antidepressant screening against DA, NE, and serotonin neurotransmitter uptake inhibition was carried out using the Neurotransmitter Transporter Uptake Assay Kit. The compounds in Series B showed relatively higher reuptake inhibitory activity for SERT, NET, and DAT than those in Series A. The length of spacer between the central piperazine core and the terminal phenyl ring substituted at the piperazine ring in Series B seems to exert an important role in the activity.

(γ-Aminobutyric Acid Transporter 2 Binds to the PDZ Domain of Mammalian Lin-7 ((γ-Aminobutyric acid transporter 2와 mammalian Lin-7의 PDZ결합)

  • Seog, Dae-Hyun;Moon, II-Soo
    • Journal of Life Science
    • /
    • v.18 no.7
    • /
    • pp.940-946
    • /
    • 2008
  • Neurotransmitter transporters, which remove neurotransmittesr from the synaptic cleft, are regulated by second messenger such as protein kinases and binding proteins. Neuronal ${\gamma}-aminobutyric$ acid transporters (GATs) are responsible for removing the inhibitory neurotransmitter ${\gamma}-aminobutyric$ acid (GABA) from the synaptic cleft. ${\gamma}-aminobutyric$ acid transporters 2 (GAT2/BGT1) is involved in regulating neurotransmitter recycling, but the mechanism how they are stabilized and regulated by the specific binding protein has not yet been elucidated. Here, we used the yeast two-hybrid system to identify the specific binding protein(s) that interacts with the C-terminal region of GAT2 and found a specific interaction with the mammalian LIN-7b (MALS-2). MALS-2 protein bound to the tail region of GAT2 but not to other GAT members in the yeast two-hybrid assay. The "T-X-L" motif at the C-terminal end of GAT2 is essential for interaction with MALS-2. In addition, this protein showed specific interactions in the glutathione S-transferase (GST) pull-down assay. An antibody to GAT2 specifically co-immunoprecipitated MALS associated with GAT2 from mouse brain extracts. These results suggest that MALS may stabilize GAT2 in brain.

Association Study of Dopamine Transporter(DAT1) G2319A Genetic Polymorphism in Alcohol Dependence (알코올의존 환자의 도파민 수송체(DAT1)G2319A의 유전자 다형성 연합연구)

  • Yang, Byung-Hwan;Lee, Mi-Gyung;Choi, Ju-Yoen;Oh, Dong-Yul;Kim, Gil-Sook;Kim, Hyung-Tae;Chai, Young-Gyu
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.239-245
    • /
    • 2001
  • Objective : Dopamine transporter is member of family of Na/Cl dependent neurotransmitter transporter, 12 transmembrane domain, that has high substrate specificity, affinity. It is related with dopamine reuptake in presynaptic vesicle. DAT has a VNTR in its 3'-untranslated region(UTR). 3'-UTR VNTR polymorphism is related with modification of dopamine transmission. The association between with VNTR polymorphism and neuropsychiatric disorders such as alcohol dependence, and low activity ALDH has been studied, but their relationship is unclear. We study about association of 3'-UTR VNTR of DAT gene and G2319A and alcohol dependence. Method : Group of Korean subjects were studied with alcohol dependence(n=49 male) compared to mentally healthy controls(n=53 male). The peripheral blood sample was acquired, and Polymerase Chain Reaction(PCR) amplification, MspI procedure was done. Result : There was a significant difference between alcohol dependence group and normal control(genotype frequency p<0.05, allele frequency p<0.05) Allele A frequency and genotype(GG, GA) frequency was a significant difference between alcohol dependence group and normal control(p<0.05). Conclusion : Our study showed that genetic polymorphism of DAT1 G2319A had relation with alcohol dependence.

  • PDF

Betaine-γ-aminobutyric Acid Transporter 1 (BGT-1/mGAT2) Interacts with the PDZ Domain of Munc-18 Interacting Proteins (Mints) (Betaine-γ-aminobutyric acid transporter 1 (BGT-1/mGAT2)과 Munc-18-interacting (Mint) 단백질의 PDZ 결합)

  • Kim, Sang-Jin;Jeong, Young-Joo;Choi, Sun-Hee;Choi, Chun-Yeon;Jun, Hee-Jae;Moon, Il-Soo;Seog, Dae-Hyun;Jang, Won-Hee
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1159-1165
    • /
    • 2012
  • The action of neuronally released ${\gamma}$-aminobutyric acid (GABA) is terminated by uptake into the neurons by GABA transporters (GATs). The mechanism underlying the stabilization and regulation of GAT2 has not yet been elucidated. We used the yeast two-hybrid system to identify proteins that interact with and, thereby, regulate betaine-${\gamma}$-aminobutyric acid transporter 1 (BGT-1/mGAT2). We found an interaction between BGT-1/mGAT2 and Munc-18-interacting proteins (Mints). The "T-H-L" motif at the C-terminal end of BGT-1/mGAT2 was essential for the interaction with Mint2 in the yeast two-hybrid assay. Mint2 bound to the tail region of BGT-1/mGAT2, but not to other GAT members. When co-expressed in HEK-293T cells, Mint2 was co-immunoprecipitated with BGT-1/mGAT2. In addition, we demonstrated the cellular co-localization of BGT-1/mGAT2 and Mint2 in the cells. These results suggest that Mint2 contributes to the regulation of BGT-1/mGAT2.

Simple synthesis of [11C]DASB in HPLC loop and small animal PET imaging study

  • Lee, Boeun;Cho, Yong-Hyun;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.2
    • /
    • pp.113-117
    • /
    • 2016
  • As a neurotransmitter, serotonin plays important roles in brain. It relates various neuropsychiatric disorders such as anxiety, depression, schizophrenia. [$^{11}C$]DASB is a well-known PET tracer for serotonin transporter imaging. In this study, we synthesized [$^{11}C$]DASB in HPLC loop for simple and rapid production. Total synthesis time was about 40 minutes and the radiochemical purities were over 99%. The specific activity was $51.4GBq/{\mu}mole$ (n=16). [$^{11}C$]DASB showed highest uptake in mid-brain that serotonergic nerves are abundant and lowest uptake in cerebellum. In conclusion, we used HPLC loop method for [$^{11}C$]DASB labeling and this method is useful for production of $^{11}C$ labeled PET tracers.

The use of ketogenic diet in special situations: expanding use in intractable epilepsy and other neurologic disorders

  • Lee, Mun-Hyang
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.316-321
    • /
    • 2012
  • The ketogenic diet has been widely used and proved to be effective for intractable epilepsy. Although the mechanisms underlying its antiepileptic effects remain to be proven, there are increasing experimental evidences for its neuroprotective effects along with many researches about expanding use of the diet in other neurologic disorders. The first success was reported in glucose transporter type 1 deficiency syndrome, in which the diet served as an alternative metabolic source. Many neurologic disorders share some of the common pathologic mechanisms such as mitochondrial dysfunction, altered neurotransmitter function and synaptic transmission, or abnormal regulation of reactive oxygen species, and the role of the ketogenic diet has been postulated in these mechanisms. In this article, we introduce an overview about the expanding use and emerging trials of the ketogenic diet in various neurologic disorders excluding intractable epilepsy and provide explanations of the mechanisms in that usage.