Browse > Article

Radiotracers for Functional Neuroimaging  

Lee, Byung-Chul (Department of Chemistry, Inha University)
Chi, Dae-Yoon (Department of Chemistry, Inha University)
Publication Information
The Korean Journal of Nuclear Medicine / v.37, no.1, 2003 , pp. 53-62 More about this Journal
Abstract
After the development of two major techniques - SPECT (Single Photon Emission Computed Tomography) and PET (Positron Emission Tomography) to image the human subjects in a three-dimensional direction in the 1980s, many radiotracers have been used for functional neuroimaging. Still it would be very important study to develop selective radiotracers for functional neuroimaging. New radiotracers will help to expand the knowledge of neurotransmitter systems and of the genetic contribution to receptor or transporter availability. Neurotransmitter depletion-restoration studies, the distribution of brain functions and their modulation by neurotransmitter system aid in better understanding and limiting the side effects of drugs used as well as newly developed. In audition, these radiotracers will be thus very useful to gain a better understanding in biochemical and pharmacological interactions in living human. This review mentions the introduction of radioligands for the functional neuroimaging. Although significant progress has been achieved in the development of new PET and SPECT ligands for in vivo imaging of those receptors and transporters, there are continuous needs of new diagnostic radioligands.
Keywords
Functional neuroimaging; Receptor; Transporter; Radioligands; Radiopharmaceuticals; Radiotracers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [$^{14}C$]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and Lee Be, et al. Radiotracers for Functional Neuroimaging 59 normal values in the conscious and anaesthetized albino rat. J Neurochem 1977;28:897-916
2 Thomas P, Vaiva G, Maron M, Baux P, Notardonato L, Dutoit D, Steinling M, Goudemand M. Major depression and SPECT brain imaging with HMPAO-$^{99m}$Tc: pre and during treatment assessments, European Neuropsycho-pharmacology 1994;4:309
3 Baron JC, Frackowiak R, Herholz K, Jones T, LammertsmaAA, Mawyer B, Weinhard K. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease J Cereb Blood Flow Metabol 1989;9:723-741
4 Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol 1987;22:487-497
5 Huang SC, Yu DC, Barrio JR, Grafton S, Melega WP, Hoffman JM, et al. Kinetics and modeling of L-6-$^{18}F$fluoro-DOPA in human positron emission tomographic studies. J Cereb Blood Flow Metabol 1991;11:898-913
6 Vingerhoets FJ, Schulzer M, Ruth TJ, Holden JE, Snow BJ. Reproducibility and discrimination ability of fluorine-18-6-fluoro-L-dopa PET in parkinson's disease. J Nucl Med 1996;37:421-426
7 Jones DW, Gorey JG, Sajicek K, Das S, Urbina RA, Lee KS, Heins A, Knable MB, Higley JD, Weinberger DR, Linnoila M. Depletion-restoration studies reveal the impact of endogenous dopamine and serotonin on [I-123]$\beta$-CIT SPECT imaging in primate brain. J Nucl Med 1998;39:42
8 Borbely K. Functional imaging (PET and SPECT) in epilepsy. Orv Hetil 2001;142:2405-2414
9 Weinberger DR, Mann U, Gibson RE, Coppola R, Jones DW, Braun AR, Berman KF, Sunderland T, Reba RC, Chase TN. Cerebral muscarinic receptors in primary degenerative dementia as evaluated by SPECT with iodine-123-labeled QNB. Adv Neurol 1990;51:147-150
10 Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, Budinger T, Conklin JJ, Eng R, Grissom MP. External imaging of cerebral muscarinic acetylcholine receptors. Science 1984;223: 291-293
11 Hawkins RA, Huang SC, Barrio JR, Keen RE, Feng D, Mazziotta JC, Phelps ME. Estimation of local cerebral protein synthesis rates with L-[1-$^{11}C$]leucine and PET: methods, model, and results in animals and humans. J Cereb Blood Flow Metabol 1989;9:446-460
12 Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, et al. Synthesis and radiopharmacology of O-(2-[$^{18}F$]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999;40:205-212
13 Rasey JS, Grierson lR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210-1217
14 Marenco S, Coppola R, Daniel DG, Zignn JR, Weinberger DR. Regional cerebral blood flow during the Wisconsin Card Sorting Test in normal subjects studied by xenon-133 dynamic SPECT: Comparison of absolute values, percent distribution values, and covariance analysis. Psychiatry Res 1993;50: 177-192
15 Kuhl DE, Metter EJ, Riege WH, Hawkins RA. The effect of normal aging on patterns of local cerebral glucose utilization. Ann Neural 1984;15:S133-137
16 Farde L, Ehrin E, Eriksson L, et al. Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci USA 1985;82:3863-3867
17 Susskind H, Weber DA, Ivanovic M, Wong CT, DeHaan CE, Gavin PR. Quantitative $^{123}I$ IMP and $^{99m}Tc$ HMPAO imaging in the dog following cocaine administration. Nucl Med Bioi 1996;23:343-352
18 Chugani DC, Muzik O, Chakraborty PK, Mangner TJ, Chugani HT. Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse 1998;28:33-43
19 Weinberger DR, Jones D, Reba RC, Mann U, Coppola R, Gibson R, Gorey J, Braun A, Chase TN. A comparison of FDG PET and IQNB SPECT in normal subjects and in patients with dementia. J Neuropsychiatry Clin Neurosci 1992;4:239-248
20 Grierson JR, Shields AF, Eary JF. Development of radiosynthesis for 3'-deoxy-3' -[F-18]fluoronucleosides. J Labelled Cpd Radiopharma 1997;40:60-62
21 Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [$^{18}F$]FLT and positron emission tomography Nat Med 1998;4:1334-1336
22 Knable MB, Jones DW, Coppola R, Hyde TM, Lee KS, Gorey J, Weinberger DR. Lateralized differences in iodine-123-IBZM uptake in the basal ganglia in asymamertic Parkinson's disease. J Nul Med 1995;36:1216-1225
23 Welch MJ, Katzenellenbogen JA, Mathias CJ, Brodack JW, Carlson KE, Chi DY, et al. N-(3-[$^{18}F$]Fluoroalkyl)-spiperone: the preferred 18F-labeled spiperone analog for positron emission tomographic studies of the dopamine receptor. Nucl Med BioI 1988;15:83-97
24 Lee J, Paik CH, Kiesewetter DO, Park SG, Eckelman WC. Evaluation of stereoisomers of 4-fluoroalkyl analogues of 3-quinuclidinyl benzilate in in vivo competition studies for the M1, M2, and M3 muscarinic receptor subtypes in brain. Nucl Med Biol 1995;22:773-781
25 Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P, Mangner T, et al. Altered serotonin synthesis in the dentatotha1amo-cortical pathway in autistic boys. Ann Neural 1997;14:666-669
26 Savic I, Persson A, Roland P, Pauli S, Sedvall G, Widen L. In vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988;2:863-866
27 Shields AF, Mankoff D, Graham MM, Zheng M, Kozawa SM, Link JM, Krolm KA. Analysis of 2-carbon-11-thymidine blood metabolites in PET imaging. J Nucl Med 1996;37:290-296
28 Vanbilloen HP, Cleynhens BJ, Verbmggen AM. Importance of the two ester functions for the brain retention of $^{99m}Tc$-Iabelled ethylene dicysteine diethyl ester ($^{99m}Tc$-ECD) Nucl Med Bioi 1998;25:569-575
29 Henry TR, Chugani HT, Abou-Khalil BW, et al. Positron emission tomography, in: Engel Jr. J. (Ed.) Surgical treatment of the epilepsies. 2nd ed. New York: Raven Press; 1993a. pp. 211-243
30 Musachio JL, Scheffel U, Finley PA., Zhan Y, Mochizuki T, Wagner HN Jr, Dannals RF. 5-[I-123/125]Iodo-3(2(S)-azetidinyhnethoxy)pyridine, a radioiodinated analog of A-85380 for in vivo studies of central nicotinic acetylcholine receptors. Life Sciences 1998;62:PL351-357
31 Nishizawa S, Benkelfat C, Young SN, et al. Differences between males and females in rates of serotonin synthesis in human brain. Proc. Natl. Acad. Sci. USA 1997;94:5308-5313
32 Ding YS, Liu N, Wang T, Marecek J, Garza V, Ojima I, Fowler JS. Synthesis and evaluation of 6-[$^{18}F$]fluoro-3-(2(S)-azetidinylmethoxy)pyridine as a PET tracer for nicotinic acetylcholine receptors Nucl Med Biol 2000;27:381-389
33 Celsis P, Goldman T, Henriksen L, Lassen NA. A method of calculation regional cerebral blood flow from emission computed tomography of inert gas concentrations. J Comput Assist Tomogr 1981;5:641-645
34 Muzik O, Chugani DC, Chakraborty P, Mangner T, Chugaui HT. Analysis of [C-11]alpha-methyl-tryptophan kinetics for the estimation of serotonin synthesis rate in vivo. J Cereb Blood Flow Metabol 1997;17:659-669
35 Chugani DC, da Silva EA, Muzik O, Chakraborty PK, Mangner TJ, Chugani HT. Abnormal serotonin synthesis in epileptic foci of children: an in vivo study with alpha[C-11]methyl-tryptophan and positron emission tomography. Epilepsia 1997;38:45
36 Innis R, Baldwin R, Sybirska E, Zea Y, Laruelle M, AI-Tikriti M, et al. Single photon emission computed tomography imaging of monoamine reuptake sites in primate brain with [$^{123}I$]CIT. Eur J Pharmacal 1991;200:369-370
37 Shields AF, Grierson lR, Kozawa SM, Zheng M. Development of labeled thymidine analogs forimaging tumor proliferation. Nucl Med Biol 1996;23:17-22
38 Shields AF, Mankoff DA, Link 1M, Graham MM, Eary JF, Kozawa SM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39:1757-1762
39 Tedroff J, Aquilonius SM, Hartvig P, Bredberg E, Bjurling P, Langstrom B. Cerebral uptake and utilization of therapeutic [beta-$^{11}C$]-L-DOPA in parkinson's disease measured by positron emission tomography. relations to motor response. Acta Neural Scand 1992;85:95-102
40 Madras BK, Sourkes TL. Metabolism of $\alpha$-methyltryptophan. Biochem Pharmacol 1965;14:1499-1506
41 Shaya EK, Scheffel U, Dannals RF, Ricaurte GA, Carroll FI, Wagner Jr. HN, et al. In vivo imaging of dopamine reuptake sites in the primate brain using single photon emission computed tomography (SPECT) and iodine-123 labeled RTI-55. Synapse 1992;10:169-172
42 Neumeyer JL, Wang S, Milius RA, Baldwin RM, Zea-Ponce Y, Hoffer PB, et al. [$^{123}I$] -2$\beta$-carbornethoxy3$\beta$-(4-iodophenyl)tropane: high-affmity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chern 1991;34: 3144-3146
43 Chi DY. Radioligands for imaging dopamine and serotonin receptors and transporters. Korean J Nucl Med 2000;34:159-168
44 Goethals I, Van De Wiele C, Boon P, Dierckx R. Is central benzodiazepine receptor imaging useful for the identification of epileptogenic foci in localization-related epilepsies? Eur J Nucl Med Mol Imaging 2003;30:325-328
45 Tomiyoshi K, Amed K, Muhammad S, Higuchi T, Inoue T, Endo K, Yang D. Synthesis of isomers of $^{18}F$-labelled amino acid radiopharmaceutical: position 2- and 3-L-[$^{18}F$]-alpha-methyltyrosine using a separation and purification system. Nucl Med Commun 1997;18:169-175
46 Ido T, Wan CN, Casella v, Fowler JS, Wolf AP, Reivich M, et al. Labeled 2-deoxy-2-glucose analogs. $^{18}F$-Iabeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2fluoro-D-rnannose and $^{14}C$-2-deoxy-2-fluoro-D-glucose. J Labelled Cpd Radiopharma 1978;14:178-183
47 Lee KS, He XS, Jones DW, Coppola R, Gorey JG, Knable MB, deCosta BR, Rice KC, Weinberger DR. An improved method for rapid and efficient radioiodination of iodine-123-IQNB. J Nucl Med 1996;37:2021-2024
48 Grierson JR, Shields AF. Radiosynthesis of 3'-deoxy-3' -[$^{18}F$]fluorothymidine: [$^{18}F$]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000;27: 143-156
49 Zeeberg BR, Boulay SF, Gitler MS, Sood VK, Reba RC. Correction of the steriochemical assignment of the benzilic acid center in (R)-(-)-3-quinuclidinyl (S)-(+)-4-iodobenzilate [(R,S)-4-IQNB] Appl Radiat Isot 1997;48:463-467
50 Eckelman WC, Eng R, Rzeszotarski WJ, Gibson RE, Francis B, Reba RC. Use of 3-quinuclidinyl 4-iodobenzilate as a receptor binding radiotracer. J Nucl Med 1985;26:637-642
51 Yun M, Oh SI, Ha H-J, Ryu JS, Moon DH. High radiochemical yield synthesis of 3-deoxy-3-[$^{18}F$]fluorothymidine using (5-O-dimetho-xytrityl-2-deoxy-3-O-nosyl-$\beta$-D-threo-pentofuranosyl)thymine and its 3-N-BOC-protected analogue as a labeling precursor. Nucl Med Biol 2003;30:in print
52 Henry TR, Frey KA, Sackellares JC, Gilman S, Koeppe RA, Brunberg JA, et al. In vivo cerebral metabolism and central benzodiazepine-receptor binding in temporal lobe epilepsy. Neurology 1993;43:1998-2006
53 Wong DF, Wagner HN, Daunais RF, et al. Effects of age on dopamine and serotonin receptor measured by positron emission tomography in the living human brain. Science 1984;226:1393-1396
54 Diksic M, Nagahiro S, Sourkes TL, Yamamoto YL. A new method to measure brain serotonin synthesis in vivo. I. Theory and basic data for a biological model. J Cereb Blood Flow Metabol 1990;9:1-12
55 Smith QR, Momma S, Aoyagi M, Rapoport SI. Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 1987;49:1651-1658