• Title/Summary/Keyword: Neuronal disease

Search Result 432, Processing Time 0.022 seconds

Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis

  • Pang, Jun-Rui;How, Sher-Wei;Wong, Kah-Hui;Lim, Siew-Huah;Phang, Siew-Moi;Yow, Yoon-Yen
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2022
  • Anti-cholinesterase (ChE)s are commonly prescribed as the symptomatic treatment of Alzheimer's disease. They are applied to prevent the breakdown of neurotransmitter acetylcholine (ACh) that bind to muscarinic and nicotinic receptors in the synaptic cleft. Seaweeds are one of the richest sources of bioactive compounds for both nutraceuticals and pharmacognosy applications. This study aimed to determine the anti-ChEs activity of Gracilaria manilaensis, one of the red seaweeds notables for its economic importance as food and raw materials for agar production. Methanol extracts (GMM) of G. manilaensis were prepared through maceration, and further purified with column chromatography into a semi-pure fraction. Ellman assay was carried out to determine the anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BuChE) activities of extracts and fractions. Lineweaver-Burk plot analysis was carried out to determine the inhibition kinetic of potent extract and fraction. Major compound(s) from the most potent fraction was determined by liquid chromatography-mass spectrometry (LCMS). GMM and fraction G (GMMG) showed significant inhibitory activity AChE with EC50 of 2.6 mg/mL and 2.3 mg/mL respectively. GMM and GMMG exhibit mixed-inhibition and uncompetitive inhibition respectively against AChE. GMMG possesses neuroprotective compounds such as cynerine A, graveolinine, militarinone A, eplerenone and curumenol. These findings showed a promising insight of G. manilaensis to be served as a nutraceutical for neuronal health care in the future.

Protective Effect of Luteolin against β-Amyloid-induced Cell Death and Damage in BV-2 Microglial Cells (베타아밀로이드로 유도된 신경소교세포 사멸에 대한 루테올린의 보호효과 연구)

  • Park, Gyu Hwan;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2013
  • Objectives : The purpose of this study is to investigate neuroprotective effects and molecular mechanisms of luteolin against ${\beta}$-amyloid ($A{\beta}_{25-35}$)-induced oxidative cell death in BV-2 cells. Methods : The protective effects of luteolin against $A{\beta}_{25-35}$-induced cytotoxicity and apoptotic cell death were determined by MTT dye reduction assay and TUNEL staining, respectively. The apoptotic cell death was further analyzed by measuring mitochondrial transmembrane potential and expression of pro- and/or anti-apoptotic proteins. To elucidate the molecular mechanisms underlying the protective effects of luteolin, intracellular accumulation of reactive oxygen species, oxidative damages, and expression of antioxidant enzymes were examined. Results : Luteolin pretreatment effectively attenuated $A{\beta}_{25-35}$-induced apoptotic cell death indices such as DNA fragmentation, dissipation of mitochondrial transmembrane potential, increased Bax/Bcl-2 ratio, and activation of c-Jun N-terminal kinase and caspase-3 in BV-2 cells. Furthermore, $A{\beta}_{25-35}$-induced intracellular formation of reactive oxygen species and subsequent oxidative damages such as lipid peroxidation and depletion of endogenous antioxidant glutathione were suppressed by luteolin treatment. The neuroprotective effects of luteolin might be mediated by up-regulation of cellular antioxidant defense system via up-regulation of ${\gamma}$-glutamylcysteine ligase, a rate-limiting enzyme in the glutathione biosynthesis and superoxide dismutase, an enzyme involved in dismutation of superoxide anion into oxygen and hydrogen peroxide. Conclusions : These findings suggest that luteolin has a potential to protect against $A{\beta}_{25-35}$-induced neuronal cell death and damages thereby exhibiting therapeutic utilization for the prevention and/or treatment of Alzheimer's disease.

Anti-parkinsonian effect of Cyperi Rhizoma via inhibition of neuroinflammatory action (향부자(香附子)의 염증 억제 작용을 통한 항파킨슨 효과)

  • Kim, Hyo Geun;Sim, Yeomoon;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.21-28
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the neuroprotective effects and mechanisms of Cyperi Rhizoma extracts (CRE) using in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the neuroprotective effect of CRE against 1-methyl-4-phenylpyridinium (MPP+) toxicity using tyrosine hydroxylase immunohistochemistry (IHC) in primary rat mesencephalic dopaminergic neurons. In addition, the effect of CRE was evaluated in mice PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For evaluations, C57bl/6 mice were orally treated with CRE 50 mg/kg for 5 days and were injected intraperitoneally with MPTP (20 mg/kg) at 2 h intervals on the last day. To identify the CRE affects on MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum of mice, the behavioral tests and IHC analysis were carried out. Also, we conducted nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) assay in dopaminergic neurons and IHC using glial markers in SNpc of mice to assess the anti-inflammation effects. Results : In primary mesencephalic culture system, CRE protected dopaminergic cells against $10{\mu}M$ MPP+-induced toxicity at 0.2 and $1.0{\mu}g/mL$. In the behavior tests, CRE treated group showed improved motor deteriorations than those in the MPTP only treated group. CRE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, CRE inhibited productions of NO and TNF-${\alpha}$ in dopaminergic culture system and activation of astrocyte and microglia in SNpc of the mice. Conclusion : We concluded that CRE shows anti-parkinsonian effect by protecting dopaminergic neurons against MPP+/MPTP toxicities through anti-inflammatory actions.

Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities

  • Jong Hee Choi;Tae Woo Kwon;Hyo Sung Jo;Yujeong Ha;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.390-399
    • /
    • 2023
  • Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 ㎍, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

Exploring the therapeutic potential: Apelin-13's neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington's disease

  • Shaysteh Torkamani-Dordshaikh;Shahram Darabi;Mohsen Norouzian;Reza Bahar;Amirreza Beirami;Meysam Hassani Moghaddam;Mobina Fathi;Kimia Vakili;Foozhan Tahmasebinia;Maryam Bahrami;Hojjat Allah Abbaszadeh;Abbas Aliaghaei
    • Anatomy and Cell Biology
    • /
    • v.57 no.3
    • /
    • pp.419-430
    • /
    • 2024
  • Huntington's disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP. Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group. Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group. Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.

Neuronal Cell Protective Effect of New Green Extract against H2O2-induced Oxidative Stress and Analysis of Bioactive Compounds (과산화수소(H2O2)로 유도된 산화 스트레스에 대한 뉴그린 추출물의 신경세포 보호효과 및 생리활성물질 분석)

  • Ha, Jeong Su;Park, Seon Kyeong;Park, Chang Hyeon;Seung, Tae Wan;Guo, Tian Jiao;Kang, Jin Young;Lee, Du Sang;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.673-679
    • /
    • 2015
  • In vitro antioxidant activities and neuronal cell protective effects of the ethyl acetate fraction of a new green extract (Brassica oleracea var. botytis aut italiana) against $H_2O_2$-induced oxidative stress were investigated, and its industrial feasibility was evaluated. The extract showed the highest contents of total phenolic compounds among other extracts as well as a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity and malondialdehyde (MDA) inhibitory effect. This extract not only decreased the intracellular reactive oxygen (ROS) level but also protected the neuronal cells against $H_2O_2$-induced oxidative stress. On analysis using gas chromatograph-mass spectrometry, the following phenolic compounds were identified: quinic acid, ferulic acid, and caffeic acid. Collectively, these results suggest that this new green extract could contain functional substances that would help prevent the risk of neurodegenerative disease.

Preventive Characteristics of Garlic Extracts Using in vitro Model System on Alzheimer's Disease (In vitro model system을 활용한 마늘 추출물의 치매예방 특성)

  • Choi, Gwi-Nam;Kim, Ji-Hye;Kwak, Ji-Hyun;Jeong, Chang-Ho;Jeong, Hee-Rok;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.45-55
    • /
    • 2010
  • In this study, the acetylcholinesterase (AChE) inhibition and neuronal cell protective effects of water, 100% methanol and dichlromethane extracts from garlic were investigated. We found that dichloromethane extract of garlic resulted in a dose-dependent manner on AChE inhibition ($IC_{50}$: $36.1{\mu}g/mL$). In cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), cell viabilities of water, 100% methanol and dichlromethane extracts were lower (almost under 40%) than amyloid ${\beta}$ protein ($A{\beta}$)-induced neurotoxicity. Because $A{\beta}$ is also known to increase neuronal cell membrane breakdown, neuronal apoptosis was further confirmed by lactate dehydrogenase (LDH) and neutral red uptake (NRU) assay. Water extract presented relative protection against $A{\beta}$-induced membrane damage in LDH assay. However all garlic extracts showed significant problem with decrease of cell viability in NRU assay, especially at dichloromethan extract. To determine active compounds in column fractions (98:2 fraction) from dichloromethane extract which showed significant AChE inhibitory effect, we performed HPLC and LC-MS analysis. It was supposed that garlic may contain allyl methyl disulfide, diallyl monosulfide, and diallyl disulfide as active compounds.

The Analysis of Neuro-Physiological Outcome of Patients with Status Epilepticus in an Intensive Care Unit (집중치료실에서 치료한 중첩성 경련 환자의 신경생리학적 결과 분석)

  • Kim, Dae-Sik;Kim, Cheon-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.2
    • /
    • pp.96-101
    • /
    • 2005
  • Status epilepticus is a medical emergency, so that rapid and vigorous treatment is required to prevent neuronal damage and systemic complication. Status epilepticus is generally defined as a continuous or intermittent seizure or an unconscious condition after the onset of seizure, lasting for 30 minutes or more. We report here the outcome of status epilepticus. We retrospectively reviewed medical record of 15 patients who were diagnosed with status epilepticus at the Asan Medical Center from January 2003 to February 2004. This outcome was evaluated considering various factors such as age of patients, history of seizures, neurologic impairment, etiology, mortality, return to baseline and initial electroencephalogram (EEG) findings. The range of age was between 1 to 79 years old and the longest duration of treatment was 118 days. Most patients were treated by using pentobarbital, midazolam, phenobarbital and other antiepileptic drugs. The overall mortality was 5 (33%) out of 15 patients. The mortality was related to etiology, underlying other medical conditions and initial EEG findings. 5 (55%) out of the 9 patients with acute etiology, 5 (71%) out of the 7 patients with a multifocal or burst-suppression EEG activity, and 3 (60%) out of the 5 patients with other medical disease were related to mortality. This data demonstrate high mortality due to status epilepticus. Mortality is related to etiology, other medical conditions and abnormalities on the initial EEG.

  • PDF

Interaction of Human α-Synuclein with VTI1B May Modulate Vesicle Trafficking

  • Lee, Hak-Joo;Lee, Kyung-Hee;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.3071-3075
    • /
    • 2012
  • Human ${\alpha}$-synuclein is the major component of the protein aggregates known as Lewy bodies or Lewy neurites, which define the intracellular lesions of Parkinson's disease. Despite extensive efforts, the physiological function of ${\alpha}$-synuclein has not yet been elucidated in detail. As an approach to defining its function, proteins that interacted with ${\alpha}$-synuclein were screened in phage display assays. The SNARE protein vesicle t-SNARE-interacting protein homologous 1B (VTI1B) was identified as an interacting partner. A selective interaction between ${\alpha}$-synuclein and VTI1B was confirmed by coimmunoprecipitation and GST pull-down assays. VTI1B and ${\alpha}$-synuclein were colocalized in N2a neuronal cells, and overexpression of ${\alpha}$-synuclein changed the subcellular localization of VTI1B to be more dispersed throughout the cytosol. Considering the role played by VTI1B, ${\alpha}$-synuclein is likely to modulate vesicle trafficking by interacting with a SNARE complex.

Immune inflammatory modulation as a potential therapeutic strategy of stem cell therapy for ALS and neurodegenerative diseases

  • Kim, Seung Hyun;Oh, Ki-Wook;Jin, Hee Kyung;Bae, Jae-Sung
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.545-546
    • /
    • 2018
  • With emerging evidence on the importance of non-cell autonomous toxicity in neurodegenerative diseases, therapeutic strategies targeting modulation of key immune cells. including microglia and Treg cells, have been designed for treatment of ALS and other neurodegenerative diseases. Strategy switching the patient's environment from a pro-inflammatory toxic to an anti-inflammatory, and neuroprotective condition, could be potential therapy for neurodegenerative diseases. Mesenchymal stem cells (MSCs) regulate innate and adaptive immune cells, through release of soluble factors such as $TGF-{\beta}$ and elevation of regulatory T cells (Tregs) and T helper-2 cells (Th2 cells), would play important roles, in the neuroprotective effect on motor neuronal cell death mechanisms in ALS. Single cycle of repeated intrathecal injections of BM-MSCs demonstrated a clinical benefit lasting at least 6 months, with safety, in ALS patients. Cytokine profiles of CSF provided evidence that BM-MSCs, have a role in switching from pro-inflammatory to anti-inflammatory conditions. Inverse correlation of $TGF-{\beta}1$ and MCP-1 levels, could be a potential biomarker to responsiveness. Thus, additional cycles of BM-MSC treatment are required, to confirm long-term efficacy and safety.