DOI QR코드

DOI QR Code

Interaction of Human α-Synuclein with VTI1B May Modulate Vesicle Trafficking

  • Lee, Hak-Joo (Department of Molecular Biology, Sejong University) ;
  • Lee, Kyung-Hee (Department of Chemistry, Sejong University) ;
  • Im, Ha-Na (Department of Molecular Biology, Sejong University)
  • Received : 2012.05.16
  • Accepted : 2012.06.26
  • Published : 2012.09.20

Abstract

Human ${\alpha}$-synuclein is the major component of the protein aggregates known as Lewy bodies or Lewy neurites, which define the intracellular lesions of Parkinson's disease. Despite extensive efforts, the physiological function of ${\alpha}$-synuclein has not yet been elucidated in detail. As an approach to defining its function, proteins that interacted with ${\alpha}$-synuclein were screened in phage display assays. The SNARE protein vesicle t-SNARE-interacting protein homologous 1B (VTI1B) was identified as an interacting partner. A selective interaction between ${\alpha}$-synuclein and VTI1B was confirmed by coimmunoprecipitation and GST pull-down assays. VTI1B and ${\alpha}$-synuclein were colocalized in N2a neuronal cells, and overexpression of ${\alpha}$-synuclein changed the subcellular localization of VTI1B to be more dispersed throughout the cytosol. Considering the role played by VTI1B, ${\alpha}$-synuclein is likely to modulate vesicle trafficking by interacting with a SNARE complex.

Keywords

References

  1. Polymeropoulos, M. H.; Lavedan, C.; Leroy, E.; Ide, S. E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; Stenroos, E. S.; Chandrasekharappa, S.; Athanassiadou, A.; Papapetropoulos, T.; Johnson, W. G.; Lazzarini, A. M.; Duvoisin, R. C.; Di Iorio, G.; Golbe, L. I.; Nussbaum, R. L. Science 1997, 276, 2045. https://doi.org/10.1126/science.276.5321.2045
  2. Kruger, R.; Kuhn, W.; Muller, T.; Woitalla, D.; Graeber, M.; Kosel, S.; Przuntek, H.; Epplen, J. T.; Schols, L.; Riess, O. Nat. Genet. 1998, 18, 106. https://doi.org/10.1038/ng0298-106
  3. Zarranz, J. J.; Alegre, J.; Gomez-Esteban, J. C.; Lezcanno, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atares, B.; Llorens, V.; Gome, Z.; Tortosa, E.; Del Ser, T.; Munoz, D. G.; de Yebenex, J. G. Ann. Neurol. 2004, 55, 164. https://doi.org/10.1002/ana.10795
  4. Singleton, A. B.; Farrer, M.; Johnson, J.; Singleton, A.; Haque, S.; Lachergus, J.; Hulihan, M.; Perualinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Miller, D.; Blancato, J.; Hardy, J.; Grinn-Hardy, K. Science 2003, 302, 841. https://doi.org/10.1126/science.1090278
  5. Charitier-Harlin, M. C.; Kachergus, J.; Roumier, C.; Mouroux, V.; Douay, X.; Lincoln, S.; Levecque, C.; Larvor, L.; Andrieux, J.; Hulihan, M.; Waucquier, N.; Defebvre, L.; Amouyel, P.; Farrer, M.; Destee, A. Lancet 2004, 364, 1167. https://doi.org/10.1016/S0140-6736(04)17103-1
  6. Iwai, A.; Masliah, E.; Yoshimoto, M.; Ge, N.; Flanagan, L.; de Silva, H. A.; Kittel, A.; Saitoh, T. Neuron 1995, 14, 467. https://doi.org/10.1016/0896-6273(95)90302-X
  7. Weinreb, P. H.; Zhen, W.; Poon, A. W.; Conway, K. A.; Lansbury, P. T., Jr. Biochemistry 1996, 35, 13709. https://doi.org/10.1021/bi961799n
  8. Davidson, W. S.; Jonas, A.; Clayton, D. F.; George, J. M. J. Biol. Chem. 1998, 273, 9443. https://doi.org/10.1074/jbc.273.16.9443
  9. Chandra, S.; Fornai, F.; Kwon, H. B.; Yazdani, U.; Atasoy, D.; Liu, X.; Hammer, R. E.; Battaglia, G.; German, D. C.; Castillo, P. E.; Südhof, T. C. Proc. Nat. Acad. Sci. USA 2004, 101, 14966. https://doi.org/10.1073/pnas.0406283101
  10. Cabin, D. E.; Shimazu, K.; Murphy, D.; Cole, N. B.; Gottschalk, W.; McIlwain, K. L.; Orrison, B.; Chen, A.; Ellis, C. E.; Paylor, R.; Lu, B.; Nussbaum, R. L. J. Neurosci. 2002, 22, 8797.
  11. Cookson, M. R. Ann. Rev. Biochem. 2005, 74, 29. https://doi.org/10.1146/annurev.biochem.74.082803.133400
  12. Dawson, T. M.; Dawson, V. T. Science 2003, 302, 819. https://doi.org/10.1126/science.1087753
  13. Giasson, B. I.; Lee, V. M. Cell 2003, 114, 1. https://doi.org/10.1016/S0092-8674(03)00509-9
  14. Masliah, E.; Rockenstein, E.; Veinbergs, I.; Mallory, M.; Hashimoto, M.; Takeda, A.; Sagara, Y.; Sisk, A.; Mucke, L. Science 2000, 287, 1265. https://doi.org/10.1126/science.287.5456.1265
  15. Larsen, K. E.; Schmitz, Y.; Troyer, M. D.; Mosharov, E.; Dietrich, P.; Quazi, A. Z.; Savalle, M.; Nemani, V.; Chaudhry, F. A.; Edwards, R. H.; Stefanis, L.; Sulzer, D. J. Neurosci. 2006, 26, 11915. https://doi.org/10.1523/JNEUROSCI.3821-06.2006
  16. Quteiro, T. F.; Lindquist, S. Science 2003, 302, 1772. https://doi.org/10.1126/science.1090439
  17. Cooper, A. A.; Gitler, A. D.; Cashikar, A.; Haynes, C. M.; Hill, K. J.; Bhullar, B.; Liu, K.; Xu, K.; Strathearn, K. E.; Liu, F.; Cao, S.; Caldwell, K. A.; Caldwell, G. A.; Marsischky, G.; Kolodner, R. D.; Labaer, J.; Rochet, J. C.; Bonini, N. M.; Lindquist, S. Science 2006, 313, 324. https://doi.org/10.1126/science.1129462
  18. Gitler, A. D.; Bevis, B. J.; Shorter, J.; Strathearn, K. E.; Hamamichi, S.; Su, L. J.; Caldwell, K. A.; Caldwell, G. A.; Rochet, J. C.; McCaffery, J. M.; Barlowe, C.; Lindquist, S. Proc. Nat. Acad. Sci. USA 2008, 105, 145. https://doi.org/10.1073/pnas.0710685105
  19. Thayanidhi, N.; Helm, J. R.; Nycz, D. C.; Bentley, M.; Liang, Y.; Hay, J. C. Mol. Cell Biol. 2010, 21, 1850. https://doi.org/10.1091/mbc.E09-09-0801
  20. Kuwahara, T.; Koyama, A.; Koyama, S.; Yoshina, S.; Ren, C. H.; Kato, T.; Mitani, S.; Iwatsubo, T. Hum. Mol. Genet. 2008, 17, 2997. https://doi.org/10.1093/hmg/ddn198
  21. Dalfo, E.; Gomez-Isla, T.; Rosa, J. L.; Bodelon, M. N.; Tejedor, M. C.; Barrachina, M.; Ambrosio, S.; Ferrer, I. J. Neuropathol. Exp. Neurol. 2004, 63, 302.
  22. Stenmark, H. Nat. Rev. Mol. Cell Biol. 2009, 10, 513.
  23. Lee, H. J.; Kang, S. J.; Lee, K.; Im, H. Biochem. Biophys. Res. Commun. 2011, 412, 526. https://doi.org/10.1016/j.bbrc.2011.07.028
  24. Antonin, W.; Holroyd, C.; Fasshauer, D.; Pabst, S.; von Mollard, G. F.; Jahn, R. EMBO J. 2000, 19, 6453. https://doi.org/10.1093/emboj/19.23.6453
  25. Kreykenbohm, V.; Wenzel, D.; Antonin, W.; Atlashkin, V.; von Mollard, G. F. Eur. J. Cell Biol. 2002, 81, 273. https://doi.org/10.1078/0171-9335-00247
  26. Murray, R. Z.; Wylie, F. G.; Khromykh, T.; Hume, D. A.; Stow, J. L. J. Biol. Chem. 2005, 280, 10478. https://doi.org/10.1074/jbc.M414420200
  27. Atlashkin, V.; Kreykenbohm, V.; Eskelinen, E. L.; Wenzel, D.; Fayyazi, A.; von Mollard, G. F. Mol. Cell Biol. 2003, 23, 5198. https://doi.org/10.1128/MCB.23.15.5198-5207.2003
  28. Benussi, L.; Ghidoni, R.; Paterlini, A.; Nicosia, F.; Alberici, A. C.; Signorini, S.; Barbiero, L.; Binetti, G. Exp. Cell Res. 2005, 308, 78. https://doi.org/10.1016/j.yexcr.2005.04.021
  29. Engelender, S.; Kaminsky, Z.; Guo, X.; Sharp, A. H.; Amaravi, R. K.; Kleiderlein, J. J.; Margolis, R. L.; Troncoso, J. C.; Lanahan, A. A.; Worley, P. F.; Dawson, V. L.; Dawson, T. M.; Ross, C. A. Nat. Genet. 1999, 22, 110. https://doi.org/10.1038/8820
  30. Alim, M. A.; Hossain, M. S.; Arima, K.; Takeda, K.; Izumiyama, Y.; Nakamura, M.; Kaji, H.; Shinoda, T.; Hisanaga, S.; Ueda, K. J. Biol. Chem. 2002, 277, 2112. https://doi.org/10.1074/jbc.M102981200
  31. Chandra, S.; Gallardo, G.; Fernandez-Chacon, R.; Schluter, O. M.; Sudhof, T. C. Cell 2005, 123, 383. https://doi.org/10.1016/j.cell.2005.09.028
  32. Lazar, T.; Götte, M.; Gallwitz, D. Trends Biochem. Sci. 1997, 9, 468.
  33. Martinez, O.; Goud, B. Biochim. Biophys. Acta 1998, 1404, 101. https://doi.org/10.1016/S0167-4889(98)00050-0
  34. Zerial, M.; McBride, H. Nat. Rev. Mol. Cell Biol. 2001, 2, 107. https://doi.org/10.1038/35052055