• Title/Summary/Keyword: Neuron-specific protein

Search Result 44, Processing Time 0.02 seconds

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Polyadenylation-Dependent Translational Control of New Protein Synthesis at Activated Synapse

  • Shin Chan-Young;Yang Sung-Il;Kim Kyun-Hwan;Ko Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2006
  • Synaptic plasticity, which is a long lasting change in synaptic efficacy, underlies many neural processes like learning and memory. It has long been acknowledged that new protein synthesis is essential for both the expression of synaptic plasticity and memory formation and storage. Most of the research interests in this field have focused on the events regulating transcriptional activation of gene expression from the cell body and nucleus. Considering extremely differentiated structural feature of a neuron in CNS, a neuron should meet a formidable task to overcome spatial and temporal restraints to deliver newly synthesized proteins to specific activated synapses among thousands of others, which are sometimes several millimeters away from the cell body. Recent advances in synaptic neurobiology has found that almost all the machinery required for the new protein translation are localized inside or at least in the vicinity of postsynaptic compartments. These findings led to the hypothesis that dormant mRNAs are translationally activated locally at the activated synapse, which may enable rapid and delicate control of new protein synthesis at activated synapses. In this review, we will describe the mechanism of local translational control at activated synapses focusing on the role of cytoplasmic polyadenylation of dormant mRNAs.

T $\alpha$ 1 $\alpha$ -tubulin promoter directs neuron-specific expression of green fluorescent protein in loach embryo

  • Joon Kim
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 1998.07a
    • /
    • pp.59-60
    • /
    • 1998
  • A DNA construct containing rat T $\alpha$ 1 $\alpha$ -tuulin gene 5'-flanking sequence and GFP reporer gene was microinjected into 1-cell loach embryos. Neuron-specific FGP expression was observed in developing loach embryos and early stage fry. The results demonstrated that rat T $\alpha$ 1 $\alpha$ -tubulin gene promoter may be sufficient to specify gene expression to neurons in loach embryos. Thus, the use of GFP reporter controlled by T $\alpha$ 1 $\alpha$ -tubulin gene promoter may facilitate visualization of the dynamic processes of neural tissue development.

  • PDF

Local protein synthesis in neuronal axons: why and how we study

  • Kim, Eunjin;Jung, Hosung
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.139-146
    • /
    • 2015
  • Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expression solely by translational control. Different stimuli to axons, such as guidance cues, growth factors, and nerve injury, promote translation of selective mRNAs, a process required for the axon's ability to respond to these cues. One of the critical questions in the field of axonal protein synthesis is how mRNA-specific local translation is regulated by extracellular cues. Here, we review current experimental techniques that can be used to answer this question. Furthermore, we discuss how new technologies can help us understand what biological processes are regulated by axonal protein synthesis in vivo.

The Changes of Brain Injury Markers(S100-$\beta$, Neuron-Specific enolase) After Retrograde Cerebral Perfusion Under Total Circulatory Arrest in Pigs (돼지에서 역행성 뇌관류 시행 후 혈청 및 소변의 뇌손상 관련지표(S100-$\beta$, Neuron-specific enolase)의 변화)

  • 김상윤;김만호;김경환
    • Journal of Chest Surgery
    • /
    • v.35 no.12
    • /
    • pp.847-853
    • /
    • 2002
  • We previously published the data that proved the safety of retrograde cerebral perfusion for 120 minutes. At this time, we planned to check the neuron-specific enolase and S100-$\beta$ in serum and urine to assess the possibility of early detection of cerebral injury. Material and Method: We used pigs(Landrace species) weighing 35 kg and performed RCP for 120 minutes. After the weaning of cardiopulmonary bypass, we observed the pigs for another 120 minutes. Systemic arterial pressure, central venous pressure, and serum and urine levels of neuron-specific enolose (NSE) and S100$\beta$ protein were checked. Central venous pressure during RCP was maintained in the range of 20 to 25 mmHg. Result: Serum levels of NSE(ng/$m\ell$) were 0.67$\pm$0.18(induction of anesthesia), 0.53$\pm$0.47(soon after CPB), 0.44$\pm$0.27(20min alter CPB), 0.24$\pm$0.09(RCP 20min), 0.37$\pm$0.35(RCP 40min), 0.33$\pm$0.21 (RCP 60min), 0.37$\pm$0.22(RCP 80min), 0.41$\pm$0.23(RCP 100 min), 0.48$\pm$0.26(RCP 120min), 0.42$\pm$0.29(30min after rewarming), 0.35 $\pm$0.32(60min after rewarming, 0.42$\pm$0.37(CPBoff 30min), 0.47$\pm$0.34(CPBOff 60min), 0.47$\pm$0.28(CPBOff 90min), and 0.57$\pm$0.29(CPBOff 120min). There was no statistically significant difference in levels between before and after RCP(ANOVA, p>0.05). Urine levels of NSE also showed no statistically significant difference in levels between before and after RCP. There was no correlation between urine and serum levels of NSE(Pearson correlation, p>0.05). Serum levels of S100$\beta$ protein(ng/$m\ell$) during the same time frames were 0.14$\pm$0.08, 0.15$\pm$0.07, 0.22$\pm$0.15, 0.23$\pm$0.07, 0.28$\pm$0.10, 0.40$\pm$0.05, 0.47$\pm$0.03, 0.49$\pm$0.12, 0.43$\pm$0.11, 0.46$\pm$0.15, 0.62$\pm$0.17, 0.77$\pm$0.21, 0.78$\pm$0.23, 0.77$\pm$0.23, and 0.82$\pm$0.33. There was statistically significant difference in levels between before and after RCP(ANOVA, p<0.05). Urine levels of NSE also showed statistically significant difference in levels between before and after RCP(ANOVA, p<0.05). There was significant correlation between urine and serum levels of NSE(Pearson correlation, p<0.05). Conclusion: The author observed the increase in serum and urine levels of S100$\beta$ after 120 minutes of RCP. Significant correlation between serum and urine levels was observed. The results were considered to be the fundamental data that could correlate this study with human-based study.

The Changes of Cerebral Metabolic Parameters, Serum Levels of Neuron-Specific Enolase and S-100$\beta$ Protein During Retrograde Cerebral Perfusion Under Profound Hypothermic Total Circulatory Arrest (초저체온하 완전순환정지 시에 이용되는 역행성 뇌관류의 시간에 따른 뇌대사 지표, 혈청 내 neuron-specific enolase, 및 S-100 베타단백의 변화)

  • 김경환
    • Journal of Chest Surgery
    • /
    • v.34 no.9
    • /
    • pp.653-661
    • /
    • 2001
  • Background: Retrograde cerebral perfusion(RCP) is one of the methods used for brain protection during aortic arch surgery. The author previously published the data, however, for the safety of it, there still remains many controversies. The author performed RCP and checked various parameters to clarify the possibility of early detection of cerebral injury. Material and Method: The author used pigs(Landrace species) weighing 25 to 30kg and performed RCP for 120 minutes. After weaning of cardiopulmonary bypass, we observed pigs for another 120 minutes. Rectal temperature, jugular venous oxygen saturation, central venous pressure were continuously monitored, and the hemodynamic values, histological changes, and serum levels of neuron-specific enolose(NSE) and S100$\beta$ protein were checked. Central venous pressure during RCP was maintained in the range of 20 to 25 mmHg. Result: Flow rates(ml/min) during RCP were 224.3$\pm$87.5(20min), 227.1$\pm$111.0(40min), 221.4$\pm$119.5(60min), 230.0$\pm$136.5(80min), 234.3$\pm$146.1(100min), and 184.3$\pm$50.5(120min). Serum levels of NSE did not increase after retrograde cerebral perfusion. Serum levels of S100$\beta$ protein(ng/ml) were 0.12$\pm$0.07(induction of anesthesia), 0.12$\pm$0.07(soon after CPB), 0.19$\pm$0.12(20min after CPB), 0.25$\pm$0.06(RCP 20min), 0.29$\pm$0.08(RCP 40min), 0.41$\pm$0.05(60min), 0.49$\pm$0.03(RCP 80min), 0.51$\pm$0.10(RCP 100min), 0.46$\pm$0.11(RCP 120min), 0.52$\pm$0.15(CPBoff 60min), 0.62$\pm$0.15(60min after rewarming), 0.76$\pm$0.17(CPBoff 30min), 0.81$\pm$0.20(CPBoff 60min), 0.84$\pm$0.23(CPBoff 90min) and 0.94$\pm$0.33(CPBoff 120min). The levels of S100$\beta$ after RCP were significantly higher than thosebefore RCP(p<0.05). The author could observe the mitochondrial swellings using transmission electron microscopy in neocortex, basal ganglia and hippocampus(CA1 region). Conclusion: The author observed the increase of serum S100$\beta$ after 120 minutes of RCP. The correlation between its level and brain injury is still unclear. The results should be reevaluated with longterm survival model also considering the confounding factors like cardiopulmonary bypass.

  • PDF

Malignant Retroperitoneal Paraganglioma in a Siberian Tiger (시베리아 호랑이에서 발생한 악성후복막부신경절종 증례)

  • Shin, Sang-Kyung;Park, Byung-Min;Youm, So-Young;Kim, Tae-Wang;Na, Ki-Jeong;Ahn, Byeong-Woo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.5
    • /
    • pp.522-525
    • /
    • 2011
  • A 14 year old female Siberian tiger presented for postmortem examination. A large mass attached to sublumbar area was found to be circumscribing aorta with metastases to mesenteric lymph nodes, uterus, kidney, adrenal gland, lung and thymus. The tumor cells were arranged in clusters or nests separated by well-developed fibrovascular stroma. The individual cells were plump and polygonal with granular eosinophilic cytoplasms and had distinct cell borders. The tumor cells were positive for synaptophysin, chromogranin A and neuron-specific enolase, and negative for cytokeratins, S100 and glial fibrillary acidic protein. The primary tumor was diagnosed as a malignant retroperitoneal paraganglioma.

Generation of Demyelination through Use of M. leprae-specific phenolic glycolipid-1 (PGL-1)

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.48-49
    • /
    • 2015
  • For myelination, Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were cultured in vitro system. The purified DRG cells with anti-mitotic agents and purified Schwann cells were cocultured and then accomplished myelination processing. Treatment of M. leprae-specific phenolic glycolipid-1 (PGL-1) into this coculture system was performed and then accomplished demyelination. Therefore, we identified demyelination processing using antibody of myelin basic protein (MBP).

Identification of Demyelination using M. leprae-specific phenolic glycolipid-1 (PGL-1) (M. leprae의 특이 phenolic glycolipid-1 (PGL-1)를 이용한 탈수초화의 검정)

  • Kim, Ji-Young;Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.943-946
    • /
    • 2015
  • For myelination, Schwann cells and neuron cells from dorsal root ganglion (DRG) of rat embryos (E16) were cultured in vitro system. The purified DRG cells with anti-mitotic agents and purified Schwann cells were cocultured and then accomplished myelination processing. Treatment of M. leprae-specific phenolic glycolipid-1 (PGL-1) into this coculture system was performed and then accomplished demyelination. Therefore, we identified demyelination processing using antibody of myelin basic protein (MBP).

  • PDF

D-galactose induces astrocytic aging and contributes to astrocytoma progression and chemoresistance via cellular senescence

  • Jingang Hou;Yeejin Yun;Jianjie Xue;Mengqi Sun;Sunchang Kim
    • Molecular Medicine Reports
    • /
    • v.20 no.5
    • /
    • pp.4111-4118
    • /
    • 2019
  • The administration of D-galactose triggers brain aging by poorly understood mechanisms. It is generally recognized that D-galactose induces oxidative stress or affects protein modifications via receptors for advanced glycated end products in a variety of species. In the present study, we aimed to investigate the involvement of astrocytes in D-galactose-induced brain aging in vitro. We found that D-galactose treatment significantly suppressed cell viability and induced cellular senescence. In addition, as of the accumulation of senescent cells, we proposed that the senescence-associated secretory phenotype (SASP) can stimulate age-related pathologies and chemoresistance in brain. Consistently, senescent astrocytic CRT cells induced by D-galactose exhibited increases in the levels of IL-6 and IL-8 via NF-κB activation, which are major SASP components and inflammatory cytokines. Conditioned medium prepared from senescent astrocytic CRT cells significantly promoted the viability of brain tumor cells (U373-MG and N2a). Importantly, conditioned medium greatly suppressed the cytotoxicity of U373-MG cells induced by temozolomide, and reduced the protein expression levels of neuron marker neuron-specific class III β-tubulin, but markedly increased the levels of c-Myc in N2a cells. Thus, our findings demonstrated that D-galactose treatment might mimic brain aging, and that D-galactose could contribute to brain inflammation and tumor progression through inducing the accumulation of senescent-secretory astrocytes.