• Title/Summary/Keyword: Neuron survival

Search Result 71, Processing Time 0.06 seconds

Identification of Genes that are Induced after Cadmium Exposure by Suppression Subtractive Hybridization

  • 이미옥
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.107-107
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity For this purpose, we employed the polymerase chain reaction-based suppression subtractive hybridization technique. We identified 29 different cadmium-inducible genes in human peripheral mononuclear cells, such as macrophage migration inhibitory factor, lysophosphatidic acid acyltransferase-${\alpha}$, enolase-1${\alpha}$, VEGF, Bax, neuron-derived orphan receptor-1, and Nur77, which are known to be associated with inflammation, cell survival, and apoptosis. Induction of these genes by cadmium treatment was further confirmed by semi-quantitative reverse-transcription polymerase chain reaction. Further, we found that these genes were also induced after cadmium exposure in normal human lung fibroblast cell line, WI-38, suggesting potential use of this induction profile to monitor cadmium toxicity in the lung. Next, Nur77, one of cadmium-inducible genes, was further studied since the products of Nur77 are known to be involved in the apoptotic process of lung cells. Following cadmium treatment, Nur77 gene expression was increased at protein-level in A549 cells. Consistently, the reporter containing Nur77 binding sequence was activated by 2.5-fold after exposure to cadmium in reporter gene analysis by transient transfection experiments. When the plasmid encoding dominant negative Nur77 that represses the transcriptional function of wild-type Nur77 was transfected into A549 cells, the expression of Bax was significantly reduced, suggesting that induction of Nur77 was an important process in cadmium-induced apoptosis in the cells. Cadmium induced the expression of Nur77 in vivo, confirming the relevance of the data obtained in viro. Together our results suggest that Nur77 gene expression in exposure to cadmium leads apoptosis of lung cells which may cause pathological changes in lung.

  • PDF

Interaction between the p75 neurotrophin receptor and a novel adaptor protein

  • Lee, Yun-Hee;Yu, Ji-Hee;Cho, Jung-Sun;Park, Han-Jeong;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.33 no.2
    • /
    • pp.71-76
    • /
    • 2008
  • The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.

Inhibitory Effects of Phylligenin on the Proliferation of Cultured Rat Neural Progenitor Cells

  • Lee, Sung-Hoon;Go, Hyo-Sang;Choi, Chang-Soon;Cheong, Jae-Hoon;Han, Sun-Young;Bae, Ki-Hwan;Ko, Kwang-Ho;Park, Seung-Hwa
    • Biomolecules & Therapeutics
    • /
    • v.18 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • Neural progenitor cells (NPCs) differentiate into astrocytes, neurons and oligodendrocytes, which is controlled by various factors in brain. Recent evidences suggest that small molecules modulating the proliferation and differentiation of NPCs may have therapeutic value as well as the potential use as chemical probes. Phylligenin is a lignan with anti-inflammatory activity that is isolated from the fruits of Forsythia koreana. We investigated effects of phylligenin on proliferation and differentiation of NPCs. Treatment of phylligenin decreased the number of proliferating NPCs in culture without effects on the differentiation and survival of neural cells such as neurons and astrocytes. To examine the mechanism of the decreased NPCs number, we performed cell cycle analysis. Proliferation of NPCs was decreased via G1-S transition block by phylligenin treatment, and it was mediated by the increase of p21 level. However, phylligenin did not induce apoptosis of NPCs as determined by TUNEL assay and PARP cleavage. We also found that viability of glioma cell lines such as C6 and U87MG glioma cells, but not that of primary neuron and astrocyte, was inhibited by phylligenin. These results suggest that phylligenin selectively inhibits proliferation of rapidly growing cells such as neural stem cells and glioma cells. Given that the possible role of brain tumor stem cells in the pathology of brain cancers, the inhibitory effects of phylligenin might be useful in the development of new therapeutic agents against brain cancers.

Study on the Effect of Gamisihotang(GSHT) on Glutamate Receptor, Free Radical and Brain Damage in Rats Subjected to Brain Ischemia (가미시호탕이 뇌허혈시 Glutamate receptor, free radical 및 뇌손상 보호에 미치는 영향)

  • Oh Byung-Yul;Kim Min-Sang;Yu Byeong-Chan;Choi Young;Seol In-Chan
    • The Journal of Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.32-44
    • /
    • 2004
  • Objectives : This study was undertaken to prove the effect of GSHT on the glutamate receptor, free radical and brain damage in rats subjected to brain ischemia Methods : Levels of cultured cortical neuron death caused by toxic chemicals were measured by LDH release assay. Neuroprotective effects of GSHT on brain tissues were examined in vivo by ischemic model of middle cerebral artery (MCA) occlusion. Results : GSHT showed significant inhibitory effect on LDH release induced by NMDA-kinate-Fe/sup 2+/. GSHT remarkably decreased coma duration time in a nonfatal dose of KCN and showed higher survival rate in a fatal dose. GSHT remarkably decreased ischemic area and edema induced by the MCA blood flow block. GSHT showed high improvement of forelimb and hind limb test after MCA occlusion in neurological examination. GSHT showed no significant change after MCA occlusion in pathological observation of the normal group. Conclusions : These results indicate that GSHT can be used to treat the brain damage caused by brain ischemia. Further study will be needed about the functional mechanism, etc.

  • PDF

Kami-bang-pung-tong-sung-san is Involved in Protecting Neuronal Cells from Cytotoxic Insults

  • Na Young Cheul;Nam Gung Uk;Lee Yong Koo;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.265-273
    • /
    • 2004
  • KBPTS is the fortified prescription of Bang-pung-tong-sung-san (BPTS) by adding Spatholobi Clulis and Salviae Miltiorrzae Radix. BPTS prescription has been used in Qriental medicine for the treatments of vascular diseases including hypertension, stroke, and arteriosclerosis, and nervous system diseases. Yet, the overall mechanism underlying its activity at the cellular levels remains unknown. To investigate the protective role of KBPTS on brain functions, noxious stimulations were applied to neurons in vitro and in vivo. KBPTS pretreatment in cultured cortical neurons of albino ICR mice rescued death caused by AMPA, NMDA, and kainate as well as by buthionine sulfoximine (BSO) and ferrous chloride (Fe/sup 2+/) treatments. Furthermore, KBPTS promoted animal's recovery from coma induced by a sublethal dose of KCN and improved survival by a lethal dose of KCN. To examine its physiological effects on the nervous system, we induced ischemia in the Sprague-Dawley rat's brain by middle cerebral artery (MCA) occlusion. Neurological examination showed that KBPTS reduced the time which is required for the animal after MCA occlusion to respond in terms of forelimb and hindlimb movement$. Histological examination revealed that KBPTS reduced ischemic area and edema rate and also protected neurons in the cerebral cortex and hippocampus from ischemic damage. Thus, the present data suggest that KBPTS may play an important role in protecting neuronal cells from external noxious stimulations.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Nicotinamide Mononucleotide Adenylyl Transferase 2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model

  • Xiaoyu Gu;Haibo Ni;XuGang Kan;Chen Chen;Zhiping Zhou;Zheng Ding;Di Li;Bofei Liu
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.4
    • /
    • pp.400-408
    • /
    • 2023
  • Objective : Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. Methods : The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. Results : NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). Conclusion : NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

Radiotherapy in Small Cell Carcinoma of the Uterine Cervix (자궁경부 소세포암종의 방사선치료)

  • Chung Eun Ji;Lee Yong Hee;Kim Gwi Eon;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.369-377
    • /
    • 1997
  • Purpose : This study was Performed to identify the histopathologic feature by the reevaluation of the Pathologic specimen of the cervical tumors and to evaluate the clinical findings and the treatment results of the patients with small cell carcinoma of the cervix treated by radiotherapy. Materials and Methods : 2890 patients with cervical carcinoma received radiotherapy at the Department of Radiation Oncology. Yonsei Cancer Center, Yonsei University College of Medicine between October 1981 and April 1995. Of the 2890 patients in this data base, sixty were found to have small cell carcinomas $(2.08\%)$. Among them thirty six patients were transferred from other hospitals. the biopsy specimens of those Patients were not available. So we could review the slides of the other twenty four patients who were diagnosed at our hospital. Twenty four patients with small cell carcinoma of the cervix were analyzed retrospectively based on the assessment of H & E staining and other four immunohistochemical stains for neuroendocrine differentiation (neuron specific enolase, chromogranin. synaptophysin and Grimelius stain). And we also evaluate the Patients and tumor characteristics. response to radiation. patterns of failures, 5 year overall and disease free survival rates. Results : Thirteen tumors were neuroendocrine carcinomas(13/24 = $54.2\%$) and eleven tumors were squamous carcinomas, small cell type (11/24 = $47.8\%$) based on the assessment of H & E staining and other four neuroendocrine marker studies. So we classified the Patients two groups as neuroendocrine carcinoma and small cell type of squamous carcinoma, Among the 13 neuroendocrine carcinomas, five were well to moderately differentiated tumors and the other eight were Poorly differentiated or undifferentiated ones. The median age was 54 years old (range 23-79 years). Eight Patients had FIGO stage IB disease, 12 had stage 11, 3 had stage III and one had stage IV disease, Pelvic lymph node metastases were found in five Patients $(20.8\%)$. three of them were diagnosed by surgical histologic examination and the other two were diagnosed by CT scan. There was no difference between two histopathologic groups in terms of patients and tumor characteristics. response to radiation. 5 year overall and disease free survival rates. However the distant metastases rate was higher in neuroendocrine carcinoma Patients (6/13:$46.2\%$) than in small cell type of squamous carcinoma Patients (2/11:$18.2\%$), but there was no statistically significant difference because of the small number of patients (P>0.05). Conclusion : More than half of the small cell carcinoma of the cervix patients were neuroendocrine carcinoma (13/24 : $54.1\%$) by reevaluation of the biopsy specimen of the cervical tumors. The tendency of distant metastases of the neurolndocrine carcinoma was greater than those of the small cell type of squamous carcinoma $(46.2\%\;vs.\;18.2\%)$. But there were no differences in the patients and tumor characteristics and other clinical treatment results in both groups. These data suggest that radical local treatment such as radiotherapy or radical surgery combined with combination systemic cytotoxic chemotherapy might provide these patients with the best chance for cure.

  • PDF

Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1 (Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상)

  • Lee, Joon-Noh;Yang, Byung-Hwan;Choi, Seung-Hak;Kim, Seok-Hyun;Chai, Young-Gyu;Jung, Kyoung-Hwa;Lee, Jun-Seok;Choi, Kang-Ju;Kim, Young-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.