• 제목/요약/키워드: Neuromorphic Systems

검색결과 11건 처리시간 0.021초

광 시냅스 및 뉴로모픽 소자 기술 (Recent Progress of Light-Stimulated Synapse and Neuromorphic Devices)

  • 송승호;김지훈;김영훈
    • 한국전기전자재료학회논문지
    • /
    • 제35권3호
    • /
    • pp.215-222
    • /
    • 2022
  • Artificial neuromorphic devices are considered the key component in realizing energy-efficient and brain-inspired computing systems. For the artificial neuromorphic devices, various material candidates and device architectures have been reported, including two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskite materials. In addition to conventional electrical neuromorphic devices, optoelectronic neuromorphic devices, which operate under a light stimulus, have received significant interest due to their potential advantages such as low power consumption, parallel processing, and high bandwidth. This article reviews the recent progress in optoelectronic neuromorphic devices using various active materials such as two-dimensional materials, metal-oxide semiconductors, organic semiconductors, and halide perovskites

뉴로모픽 시스템을 위한 실리콘 기반의 STDP 펄스 발생 회로 (Silicon Based STDP Pulse Generator for Neuromorphic Systems)

  • 임정훈;김경기
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.64-67
    • /
    • 2018
  • A new CMOS neuron circuit for implementing bistable synapses with spike-timing-dependent plasticity (STDP) properties has been proposed. In neuromorphic systems using STDP properties, the short-term dynamics of the synaptic efficacies are governed by the relative timing of the pre- and post-synaptic spikes, and the efficacies tend asymptotically to either a potentiated state or to a depressed one on long time scales. The proposed circuit consists of a negative shifter, a current starved inverter and a schmitt trigger designed using 0.18um CMOS technology. The simulation result shows that the proposed circuit can reduce the total size of neurons, and the spike energy of the proposed circuit is much less compared to the conventional circuits.

Spiking Neural Networks(SNN)를 위한 컴파일러 구조와 매핑 알고리즘 성능 분석 (A Structure of Spiking Neural Networks(SNN) Compiler and a performance analysis of mapping algorithm)

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.613-618
    • /
    • 2022
  • SNN(Spiking Neural Networks) 기반의 인공지능 연구는 현재 유행하는 DNN(Deep Neural Networks) 기반의 인공지능의 한계를 극복할 수 있는 차세대 인공지능으로서 주목받고 있다. 본 논문에서는 SNN 형태의 입력을 뉴로모픽 컴퓨팅 시스템에서 구동시킬 수 있는 시스템 SW인 SNN 컴파일러의 구조에 대하여 설명한다. 또한 컴파일러 구현을 위하여 사용된 알고리즘을 소개하고 매핑 알고리즘의 동작 형태에 따라 뉴로모픽 컴퓨팅 시스템에서 수행시간이 어떻게 달라지는지에 대한 실험결과를 제시한다. 본문에서 제안한 매핑 알고리즘은 랜덤 매핑에 비해 최대 3.96배의 수행속도 향상이 있었다. 해당 연구 결과를 통해 SNN들을 다양한 뉴로모픽 하드웨어에서 적용할 수 있을 것이다.

ETRI AI 실행전략 2: AI 반도체 및 컴퓨팅시스템 기술경쟁력 강화 (ETRI AI Strategy #2: Strengthening Competencies in AI Semiconductor & Computing Technologies)

  • 최새솔;연승준
    • 전자통신동향분석
    • /
    • 제35권7호
    • /
    • pp.13-22
    • /
    • 2020
  • There is no denying that computing power has been a crucial driving force behind the development of artificial intelligence today. In addition, artificial intelligence (AI) semiconductors and computing systems are perceived to have promising industrial value in the market along with rapid technological advances. Therefore, success in this field is also meaningful to the nation's growth and competitiveness. In this context, ETRI's AI strategy proposes implementation directions and tasks with the aim of strengthening the technological competitiveness of AI semiconductors and computing systems. The paper contains a brief background of ETRI's AI Strategy #2, research and development trends, and key tasks in four major areas: 1) AI processors, 2) AI computing systems, 3) neuromorphic computing, and 4) quantum computing.

뉴로모픽 시스템 향상을 위한 RRAM 기반 시냅스 소자 리뷰 (A Review of RRAM-based Synaptic Device to Improve Neuromorphic Systems)

  • 박건우;김제규;최건우
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.50-56
    • /
    • 2022
  • In order to process a vast amount of data, there is demand for a new system with higher processing speed and lower energy consumption. To prevent 'memory wall' in von Neumann architecture, RRAM, which is a neuromorphic device, has been researched. In this paper, we summarize the features of RRAM and propose the device structure for characteristic improvement. RRAM operates as a synapse device using a change of resistance. In general, the resistance characteristics of RRAM are nonlinear and random. As synapse device, linearity and uniformity improvement of RRAM is important to improve learning recognition rate because high linearity and uniformity characteristics can achieve high recognition rate. There are many method, such as TEL, barrier layer, NC, high oxidation properties, to improve linearity and uniformity. We proposed a new device structure of TiN/Al doped TaOx/AlOx/Pt that will achieve high recognition rate. Also, with simulation, we prove that the improved properties show a high learning recognition rate.

뉴로모픽 칩에서 운영되는 RBF 기반 네트워크 학습을 위한 시뮬레이터 개발 (Development of a Simulator for RBF-Based Networks on Neuromorphic Chips)

  • 이여울;서경은;최대웅;고재진;이상엽;이재규;조현중
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제8권11호
    • /
    • pp.251-262
    • /
    • 2019
  • 본 논문에서는 뉴로모픽 칩에서 운영되는 RBF 네트워크를 다양한 형태로 제공하는 시뮬레이터를 제안한다. 뉴로모픽 칩의 RBF 네트워크를 학습할 때 시뮬레이터를 사용할 경우에는 시간은 단축되지만 다양한 형태의 알고리즘을 테스트하기 어렵다는 단점이 있다. 본 제안 시뮬레이터는 기존 시뮬레이터와 비교하여 4배 많은 종류의 네트워크 구조 모의실험이 가능하며 특히, 이중 레이어 구조를 추가로 제공한다. 이중 레이어 구조는 다중 데이터 입력 시 활용되도록 구성하였으며 성능 분석 결과, 본 이중 레이어 구조가 기존보다 더 높은 정확도를 보였다.

멀티모달 신호처리를 위한 경량 인공지능 시스템 설계 (Design of Lightweight Artificial Intelligence System for Multimodal Signal Processing)

  • 김병수;이재학;황태호;김동순
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.1037-1042
    • /
    • 2018
  • 최근 인간의 뇌를 모방하여 정보를 학습하고 처리하는 뉴로모픽 기술에 대한 연구는 꾸준히 진행되고 있다. 뉴로모픽 시스템의 하드웨어 구현은 다수의 간단한 연산절차와 고도의 병렬처리 구조로 구성이 가능하여, 처리속도, 전력소비, 저 복잡도 구현 측면에서 상당한 이점을 가진다. 또한 저 전력, 소형 임베디드 시스템에 적용 가능한 뉴로모픽 기술에 대한 연구가 급증하고 있으며, 정확도 손실 없이 저 복잡도 구현을 위해서는 입력데이터의 차원축소 기술이 필수적이다. 본 논문은 멀티모달 센서 데이터를 처리하기 위해 멀티모달 센서 시스템, 다수의 뉴론 엔진, 뉴론 엔진 컨트롤러 등으로 구성된 경량 인공지능 엔진과 특징추출기를 설계 하였으며, 이를 위한 병렬 뉴론 엔진 구조를 제안하였다. 설계한 인공지능 엔진, 특징 추출기, Micro Controller Unit(MCU)를 연동하여 제안한 경량 인공지능 엔진의 성능 검증을 진행하였다.

커패시터 기반 자가발전 인공 신경망 디바이스 설계 (The design of capacitor-based self-powered artificial neural networks devices)

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.361-367
    • /
    • 2020
  • 본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.

Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications

  • Young-Min Kim;Jihye Lee;Deok-Jin Jeon;Si-Eun Oh;Jong-Souk Yeo
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.7.1-7.9
    • /
    • 2021
  • Neuromorphic systems require integrated structures with high-density memory and selector devices to avoid interference and recognition errors between neighboring memory cells. To improve the performance of a selector device, it is important to understand the characteristics of the switching process. As changes by switching cycle occur at local nanoscale areas, a high-resolution analysis method is needed to investigate this phenomenon. Atomic force microscopy (AFM) is used to analyze the local changes because it offers nanoscale detection with high-resolution capabilities. This review introduces various types of AFM such as conductive AFM (C-AFM), electrostatic force microscopy (EFM), and Kelvin probe force microscopy (KPFM) to study switching behaviors.

단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터 (Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes)

  • 장동준;권민우
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.633-638
    • /
    • 2022
  • 최근 인간의 뇌를 모방한 스파이킹 뉴럴 네트워크(SNNs)의 뉴로모픽(Neuromorphic) 시스템이 주목을 받고 있다. 뉴로모픽 기술은 인지 응용과 처리 과정에서 속도가 빠르고 전력 소모가 적다는 장점이 있다. SNNs 기반의 저항성 랜덤 엑세스 메모리(RRAM) 은 병렬 연산을 위한 가장 효율적인 구조이며 스파이크 타이밍 종속 가소성(STDP)의 점진적인 스위칭 동작을 수행한다. 시냅스 소자 동작으로서의 RRAM은 저 전력 프로세싱과 다양한 메모리 상태를 표현한다. 하지만, RRAM 소자의 통합은 높은 스위칭 전압 및 전류를 유발하여 높은 전력 소비를 초래한다. RRAM의 동작 전압을 낮추기 위해서는 스위칭 레이어와 금속 전극의 신소재를 개발하는 것이 중요하다. 본 연구에서는 스위칭 전압을 낮추기 위해 전기적, 기계적 특성이 우수한 단일 벽 탄소나노튜브(SWCNTs)를 갖는 (Metal/Al2O3/HfOx/SWCNTs/N+silicon, MOCS)라는 최적화된 새로운 구조를 제안하였다. 따라서 SWCNTs 기반 멤리스터의 점진적인 스위칭 동작 및 저 전력 I/V 곡선의 향상을 보여준다.