• Title/Summary/Keyword: Neuro2A cell

Search Result 74, Processing Time 0.036 seconds

Synthesis and Biological Evaluation of Novel GSK-3β Inhibitors as Anticancer Agents

  • Choi, Min-Jeong;Oh, Da-Won;Jang, Jae-Wan;Cho, Yong-Seo;Seo, Seon-Hee;Jeong, Kyu-Sung;Ko, Soo-Young;Pae, Ae-Nim
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2015-2020
    • /
    • 2011
  • A series of isoxazol-indolin-2-one was designed for GSK-3${\beta}$ inhibitors as novel anticancer agents based on their binding mode analysis in GSK-3${\beta}$ crystal structure. Total 21 compounds were synthesized and evaluated for their inhibitory activity against two tumor cell lines (DU145 and HT29). Most of the synthesized compounds were potent with above 80% inhibitory activity at 100 ${\mu}M$, and several compounds were examined for inhibitory activity against GSK-3${\beta}$. Among them, 15(Z) ($R_1$=H, $R_2$=3-Cl-phenyl) was most active with 78% inhibition of tumor cell line (HT29) at 20 ${\mu}M$ and 72% inhibition of GSK-3${\beta}$ at 20 ${\mu}M$.

Studies on the Anti-apoptotic Effect of the Mudanpi (목단피가 세포고사의 억제에 미치는 영향에 관한 연구)

  • Kwon Duck Yun;Bae Young Chun;Lee Sang Min;Yoo Kwan Seok;Joo Jong Cheon;Kim Kyung Yo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1071-1077
    • /
    • 2004
  • Mudanpi (Cortex Moutan Radicis; the root cortex of Paeonia suffruticosa Andrews) is an important Chinese crude drug used in many oriental prescriptions. 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose (PGG), a major component of this crude drug, has been shown to possess potent antioxidant, anti-mutagenic and anti-proliferative effects. In this study, I examined whether PGG could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 expression and HO activity. Exposure of Neuro 2A cells to PGG (10-50μM) resulted in a concentration- and time-dependent induction of HO-1 mRNA, and protein expressions and heme oxygenase activity. PGG protected the cells from hydrogen peroxide-induced cell death. The protective effect of PGG on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. These results indicate that PGG is a potent inducer of HO-1 and HO-1 induction is responsible for the PGG-mediated cytoprotection against oxidative damage.

Neurons-on-a-Chip: In Vitro NeuroTools

  • Hong, Nari;Nam, Yoonkey
    • Molecules and Cells
    • /
    • v.45 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.

Study on the Inhibitory Effect of Anti-Alzheimer in CT105-induced Neuro 2A Cell Lines by Gamiyaungshinhwan Water Extract (가미녕신환(加味寧神丸)이 CT105로 유도된 Neuro2A 세포주에서의 항치매 효과(效果))

  • Bang, Jae-Sun;Yoon, Hyun-Duk;Shin, Oh-Chul;Shin, Yoo-Jung;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.603-616
    • /
    • 2006
  • The water extract of Gamiyaengshinhwan (GYH), has been used in vitro tests for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with CT105-related dementias and Alzheimer's disease(AD). CT105 derived from proteolytic processing of the $\beta$-amyloid precursor protein (APP), including the amyloid-$\beta$ peptide ($A{\beta}$), plays a critical role in the pathogenesis of Alzheimer's dementia. We determined that transfected overexpressing APP695 and $A{\beta}$ CT105 have a profound attenuation in the Increase in CT105 expressing neuro2A cells from GYH. Experimental evidence indicates that GYH protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a neuroblastoma cell line stably expressing CT105-associated neuronal degeneration, we demonstrated that GYH inhibits formation of amyloid-$\beta$ fragment ($A{\beta}$ CT105). which are the characteristic, and possibly causative, features of AD. The decreased CT105 $A{\beta}$ in the presence of GYH was observed in the conditioned medium of this CT105-secreting cell line under in vitro. In the cells, GYH significantly attenuated mitochondrion-initiated apoptosis and decreased the activity of Bax, a key enzyme in the apoptosis cell-signaling cascade. These results suggest that neuronal damage in AD might be due to two factors: a direct CT05 toxicity and the apoptosis initiated by the mitochondria. Multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of CT105 aggregation, underlie the neuroprotective effects of GYH.

  • PDF

The Effect of Acupuncture in Promoting Neurogenesis and Angiogenesis after Middle Cerebral Artery Occlusion in Rats

  • Lee, Hong Min;Nam, Sang Soo;Kim, Yong Suk
    • Journal of Acupuncture Research
    • /
    • v.30 no.3
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : This study was performed to choose more effective neuro-protective acupuncture point and to verify the effect of acupuncture in promoting neurogenesis and angiogenesis as a result of its neuro-vasculo-regenerative effect in middle cerebral artery occlusion model in rats. Methods : By TTc staining we chose the most effective acupuncture point with neuro-protection. We randomly divided into four groups: Such as (1) sham group(with sham-operation), (2) sham+acupuncture group(with sham-operation), (3) middle cerebral artery occlusion group, (4) MCAO+AT group. Acupuncture procedure was performed for four days. Total RNA was extracted using TRIzol reagent, according to the manufacturer's instructions, and was purified using an RNAeasy mini kit. Immuno-histochemistry was performed using primary antibody mouse anti-BrdU, NeuN, Dcx, and VEGF. Results : We found that $ST_{36}$ had the more neuroprotective effect than $LI_{11}$ and $SP_3$. The microarray analysis revealed that 54 genes were more expressed neurogenesis pathway in MCAO+AT group compared with MCAO group(fold changes greater than or equal to twofold change). 11 genes were more expressed angiogenesis pathway. And 7 genes were more expressed VEGF pathway. Immuno-histochemistry revealed that cell proliferation, cell migration and cell maturation were increased. Conclusions : This study demonstrated that acupuncture on $ST_{36}$ had neuro-protective and neuro-restorative effect in ischemic brain injuries. And its mechanism might be related to promote neurogenesis and angiogenesis. These results suggest that acupuncture have potential benefits for the treatment of ischemic stroke.

Effect of the neuroprotetion and anti-Alzheimer's disease in CT99-induced Neuro 2A cells by Ikgiansintang water extract (CT99 발현 신경 세포주에서 익기안신탕(益氣安神湯)의 신경보호 및 항치매 효과)

  • Hwang, Yeon-Kyu;Lee, So-Yeon;Yoon, Hyeon-Deok;Shin, Oh-Chul;Park, Chang-Gook;Park, Chi-Sang
    • Herbal Formula Science
    • /
    • v.13 no.1
    • /
    • pp.103-121
    • /
    • 2005
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. It has been widely believed that $A{\beta}$ peptide devided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that n99 may be an important factor causing neurotoxicity in AD. Mouse Neuro 2A cells expressed with CT99 exhibited remarkable apoptotic cell damage. We invesgated the protective effects of Ikgiansintang water extract(IGA). Findings from our experiment have shown that IGA inhibits the activities of CT99, which has neurotoxicities and apoptotic activities in cell line. In addition treatment of IGA($50{\mu}g/ml$ for 24 hours) partially prevented CT99-induced cytotoxicity in Neuro 2A cells. As the result of this study, In IGA group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuro 2A cells by n99 expression is promoted. Base on these findings, IGA may be beneficial for the treatment of AD.

  • PDF

Cerebrospinal Fluid Profiles and Their Changes after Intraventricular Chemotherapy as Prognostic or Predictive Markers for Patients with Leptomeningeal Carcinomatosis

  • Kwon, Ji-Woong;Shim, Youngbo;Gwak, Ho-Shin;Park, Eun Young;Joo, Jungnam;Yoo, Heon;Shin, Sang-Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.631-643
    • /
    • 2021
  • Objective : Here, we evaluated whether cerebrospinal fluid (CSF) profiles and their changes after intraventricular chemotherapy for leptomeningeal carcinomatosis (LMC) could predict the treatment response or be prognostic for patient overall survival (OS) along with clinical factors. Methods : Paired 1) pretreatment lumbar, 2) pretreatment ventricular, and 3) posttreatment ventricular samples and their CSF profiles were collected retrospectively from 148 LMC patients who received Ommaya reservoir installation and intraventricular chemotherapy. CSF profile changes were assessed by calculating the differences between posttreatment and pretreatment samples from the same ventricular compartment. CSF cell counts were further differentiated into total and other based on clinical laboratory reports. Results : For the treatment response, a decreased CSF 'total' cell count tended to be associated with a 'controlled' increase in intracranial pressure (ICP) (p=0.059), but other profile changes were not associated with either the control of increased ICP or the cytology response. Among the pretreatment CSF profiles, lumbar protein level and ventricular cell count were significantly correlated with OS in univariable analysis, but they were not significant in multi-variable analysis. Among CSF profile changes, a decrease in 'other' cell count showed worse OS than 'no change' or increased groups (p=0.001). The cytological response was significant for OS, but the hazard ratio of partial remission was paradoxically higher than that of 'no response'. Conclusion : A decrease in other cell count of CSF after intraventricular chemotherapy was associated with poor OS in LMC patients. We suggest that more specific CSF biomarkers of cancer cell origin are needed.

High Resolution Genomic Profile of Neuro2a Murine Neuroblastoma Cell Line by Array-based Comparative Genomic Hybridization (고집적어레이 기반의 비교유전체보합법(CGH)을 통한 신경아세포종 Neuro2a 세포의 유전체이상 분석)

  • Do, Jin-Hwan;Kim, In-Su;Ko, Hyun-Myung;Choi, Dong-Kug
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.449-456
    • /
    • 2009
  • Murine Neuro-2a (N2a) cells have been widely used for the investigation of neuronal differentiation, trophic interaction and neurotoxic effects of various compounds and their associated mechanisms. N2a cells have many genomic variations such as gains or losses in DNA copy number, similar to other neuroblastoma cells, and no systematic or high-resolution studies of their genome-wide chromosomal aberrations have been reported. Presently, we conducted a systematic genome-wide determination of chromosomal aberrations in N2a cells using a high-throughput, oligonucleotide array-based comparative genomic hybridization (oaCGH) technique. A hidden Markov Model was employed to assign each genomic oligonucleotide to a DNA copy number state: double loss, single loss, normal, gain, double gain and amplification. Unlike most neuroblastoma cells, Mycn amplification was not observed in N2a cells. In addition, these cells showed gain only in the neuron-derived neurotrophic factor (NF), while other neurotrophic factors such as glial line-derived NF and brain-derived NF presented normal copy numbers. Chromosomes 4, 8, 10, 11 and 15 displayed more than 1000 aberrational oligonucleotides, while chromosomes 3, 17, 18 and 19 displayed less than 20. The largest region of gain was located on chromosome 8 and its size was no less than 26.7 Mb (Chr8:8427841-35162415), while chromosome 4 had the longest region of single deletion, with a size of 15.1 Mb (Chr4:73265785-88374165).

Protective Effects of Dodam Water Extract (Dodam) Against Rotenone-Induced Neurotoxicity in Neuro-2A Cells

  • Youn, Myung-Ja;Park, Seong-Yeol;Park, Cha-Nny;Kim, Jin-Kyung;Kim, Yun-Ha;Kim, Eun-Sook;Moon, Byung-Soon;So, Hong-Seob;Park, Raek-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.438-445
    • /
    • 2008
  • Dodam formula (Dodam) has been used for neurodegenerative disease in Oriental medicine. Dodam is capable of protecting diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the underlying protective mechanism of Dodam on rotenone-induced cytotoxicity in rat neuroblastoma Neuro-2A cells. Treatment with Neuro-2A cells with rotenone caused the loss of cell viability, and condensation and fragmentation of nuclei, which was associated with the elevation of ROS level, and lipid peroxidation, the increase in Bax/Bcl-2 ratio. Rotenone induced mitochondrial dysfunction characterized by mitochondrial membrane potential loss and cytochrome-c release. These phenotypes induced by rotenone were reversed by pretreatment with Dodam. Our results suggested that major features of rotenone-induced neurotoxicity are partially mediated by mitochondrial dysfunction and oxidative stress, and that Dodam markedly protects Neuro-2A cells from oxidative injury. These data indicated that Dodam might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by oxidative injuries.

Protective Effects of Potassium Ion on Rotenone-Induced Apoptosis in Neuronal (Neuro 2A) Cells

  • Park, Ji-Hwan;Kim, Yun-Ha;Moon, Seong-Keun;Kim, Tae-Young;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.6
    • /
    • pp.456-464
    • /
    • 2005
  • Objective : The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. Methods : Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium[MTT] assay, Lactate dehydrogenase[LDH] release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. Results : Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species[ROS] resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. Conclusion : The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.