Browse > Article
http://dx.doi.org/10.14348/molcells.2022.2023

Neurons-on-a-Chip: In Vitro NeuroTools  

Hong, Nari (Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Nam, Yoonkey (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Abstract
Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.
Keywords
axon guidance; cell culture; microelectrode array; network analysis; neural circuits; soft-lithography;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, E., Jeon, S., An, H.K., Kianpour, M., Yu, S.W., Kim, J.Y., Rah, J.C., and Choi, H. (2020). A magnetically actuated microrobot for targeted neural cell delivery and selective connection of neural networks. Sci. Adv. 6, eabb5696.   DOI
2 Kim, W.R., Jang, M.J., Joo, S., Sun, W., and Nam, Y. (2014). Surface-printed microdot array chips for the quantification of axonal collateral branching of a single neuron in vitro. Lab Chip 14, 799-805.   DOI
3 Krumpholz, K., Rogal, J., El Hasni, A., Schnakenberg, U., Braunig, P., and Bui-Gobbels, K. (2015). Agarose-based substrate modification technique for chemical and physical guiding of neurons in vitro. ACS Appl. Mater. Interfaces 7, 18769-18777.   DOI
4 Levy, O., Ziv, N.E., and Marom, S. (2012). Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. Eur. J. Neurosci. 35, 1753-1760.   DOI
5 Li, W., Xu, Z., Huang, J.Z., Lin, X.D., Luo, R.C., Chen, C.H., and Shi, P. (2014). NeuroArray: a universal interface for patterning and interrogating neural circuitry with single cell resolution. Sci. Rep. 4, 4784.   DOI
6 Berdondini, L., Chippalone, M., van der Wal, P.D., Imfeld, K., de Rooij, N.F., Koudelka-Hep, M., Tedesco, M., Martinoia, S., van Pelt, J., Le Masson, G., et al. (2006). A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sens. Actuators B Chem. 114, 530-541.   DOI
7 Albers, J. and Offenhausser, A. (2016). Signal propagation between neuronal populations controlled by micropatterning. Front. Bioeng. Biotechnol. 4, 46.   DOI
8 Hattori, A., Moriguchi, H., Ishiwata, S., and Yasuda, K. (2004). A 1480/1064 nm dual wavelength photo-thermal etching system for non-contact three-dimensional microstructure generation into agar microculture chip. Sens. Actuators B Chem. 100, 455-462.   DOI
9 Liu, W.W., Xing, S.G., Yuan, B., Zheng, W.F., and Jiang, X.Y. (2013). Change of laminin density stimulates axon branching via growth cone myosin II-mediated adhesion. Integr. Biol. (Camb.) 5, 1244-1252.   DOI
10 Hasan, M.F. and Berdichevsky, Y. (2016). Neural circuits on a chip. Micromachines (Basel) 7, 157.   DOI
11 Honegger, T., Scott, M.A., Yanik, M.F., and Voldman, J. (2013). Electrokinetic confinement of axonal growth for dynamically configurable neural networks. Lab Chip 13, 589-598.   DOI
12 Dertinger, S.K.W., Jiang, X.Y., Li, Z.Y., Murthy, V.N., and Whitesides, G.M. (2002). Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. U. S. A. 99, 12542-12547.   DOI
13 Brewer, G.J., Boehler, M.D., Leondopulos, S., Pan, L.B., Alagapan, S., DeMarse, T.B., and Wheeler, B.C. (2013). Toward a self-wired active reconstruction of the hippocampal trisynaptic loop: DG-CA3. Front. Neural Circuits 7, 165.
14 Duc, P., Vignes, M., Hugon, G., Sebban, A., Carnac, G., Malyshev, E., Charlot, B., and Rage, F. (2021). Human neuromuscular junction on micro-structured microfluidic devices implemented with a custom micro electrode array (MEA). Lab Chip 21, 4223-4236.   DOI
15 Merz, M. and Fromherz, P. (2005). Silicon chip interfaced with a geometrically defined net of snail neurons. Adv. Funct. Mater. 15, 739-744.   DOI
16 Moutaux, E., Christaller, W., Scaramuzzino, C., Genoux, A., Charlot, B., Cazorla, M., and Saudou, F. (2018b). Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci. Rep. 8, 13429.   DOI
17 Honegger, T., Thielen, M.I., Feizi, S., Sanjana, N.E., and Voldman, J. (2016). Microfluidic neurite guidance to study structure-function relationships in topologically-complex population-based neural networks. Sci. Rep. 6, 28384.   DOI
18 Magdesian, M.H., Lopez-Ayon, G.M., Mori, M., Boudreau, D., Goulet-Hanssens, A., Sanz, R., Miyahara, Y., Barrett, C.J., Fournier, A.E., De Koninck, Y., et al. (2016). Rapid mechanically controlled rewiring of neuronal circuits. J. Neurosci. 36, 979-987.   DOI
19 Marconi, E., Nieus, T., Maccione, A., Valente, P., Simi, A., Messa, M., Dante, S., Baldelli, P., Berdondini, L., and Benfenati, F. (2012). Emergent functional properties of neuronal networks with controlled topology. PLoS One 7, e34648.   DOI
20 Edagawa, Y., Nakanishi, J., Yamaguchi, K., and Takeda, N. (2012). Spatiotemporally controlled navigation of neurite outgrowth in sequential steps on the dynamically photo-patternable surface. Colloids Surf. B Biointerfaces 99, 20-26.   DOI
21 Fair, S.R., Julian, D., Hartlaub, A.M., Pusuluri, S.T., Malik, G., Summerfied, T.L., Zhao, G.M., Hester, A.B., Ackerman, W.E., Hollingsworth, E.W., et al. (2020). Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development. Stem Cell Reports 15, 855-868.   DOI
22 Feinerman, O., Rotem, A., and Moses, E. (2008). Reliable neuronal logic devices from patterned hippocampal cultures. Nat. Phys. 4, 967-973.   DOI
23 Park, J., Kim, S., Park, S.I., Choe, Y., Li, J.R., and Han, A. (2014). A microchip for quantitative analysis of CNS axon growth under localized biomolecular treatments. J. Neurosci. Methods 221, 166-174.   DOI
24 Okujeni, S., Kandler, S., and Egert, U. (2017). Mesoscale architecture shapes initiation and richness of spontaneous network activity. J. Neurosci. 37, 3972-3987.   DOI
25 Osaki, T. and Ikeuchi, Y. (2021). Advanced complexity and plasticity of neural activity in reciprocally connected human cerebral organoids. BioRxiv, https://doi.org/10.1101/2021.02.16.431387   DOI
26 Pan, L.B., Alagapan, S., Franca, E., Brewer, G.J., and Wheeler, B.C. (2011). Propagation of action potential activity in a predefined microtunnel neural network. J. Neural Eng. 8, 046031.   DOI
27 Park, J., Koito, H., Li, J.R., and Han, A. (2012). Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. Lab Chip 12, 3296-3304.   DOI
28 Qin, D., Xia, Y.N., and Whitesides, G.M. (2010). Soft lithography for microand nanoscale patterning. Nat. Protoc. 5, 491-502.   DOI
29 Nam, Y. and Wheeler, B.C. (2011). In vitro microelectrode array technology and neural recordings. Crit. Rev. Biomed. Eng. 39, 45-61.   DOI
30 Forro, C., Thompson-Steckel, G., Weaver, S., Weydert, S., Ihle, S., Dermutz, H., Aebersold, M.J., Pilz, R., Demko, L., and Voros, J. (2018). Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens. Bioelectron. 122, 75-87.   DOI
31 Fricke, R., Zentis, P.D., Rajappa, L.T., Hofmann, B., Banzet, M., Offenhausser, A., and Meffert, S.H. (2011). Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32, 2070-2076.   DOI
32 Gladkov, A., Pigareva, Y., Kutyina, D., Kolpakov, V., Bukatin, A., Mukhina, I., Kazantsev, V., and Pimashkin, A. (2017). Design of cultured neuron networks in vitro with predefined connectivity using asymmetric microfluidic channels. Sci. Rep. 7, 15625.   DOI
33 Campenot, R.B. (1977). Local control of neurite development by nerve growth-factor. Proc. Natl. Acad. Sci. U. S. A. 74, 4516-4519.   DOI
34 Yamamoto, H., Matsumura, R., Takaoki, H., Katsurabayashi, S., Hirano-Iwata, A., and Niwano, M. (2016). Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution. Appl. Phys. Lett. 109, 043703.   DOI
35 Rajnicek, A.M., Britland, S., and McCaig, C.D. (1997). Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J. Cell Sci. 110, 2905-2913.   DOI
36 Nagendran, T., Larsen, R.S., Bigler, R.L., Frost, S.B., Philpot, B.D., Nudo, R.J., and Taylor, A.M. (2017). Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling. Nat. Commun. 8, 625.   DOI
37 Nam, Y., Chang, J.C., Wheeler, B.C., and Brewer, G.J. (2004). Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures. IEEE Trans. Biomed. Eng. 51, 158-165.   DOI
38 Natarajan, A., DeMarse, T.B., Molnar, P., and Hickman, J.J. (2013). Engineered in vitro feed-forward networks. J. Biotechnol. Biomater. 3, 153.
39 Renault, R., Durand, J.B., Viovy, J.L., and Villard, C. (2016). Asymmetric axonal edge guidance: a new paradigm for building oriented neuronal networks. Lab Chip 16, 2188-2191.   DOI
40 Trujillo, C.A., Gao, R., Negraes, P.D., Gu, J., Buchanan, J., Preissl, S., Wang, A., Wu, W., Haddad, G.G., Chaim, I.A., et al. (2019). Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558-569.e7.   DOI
41 Zafeiriou, M.P., Bao, G.B., Hudson, J., Halder, R., Blenkle, A., Schreiber, M.K., Fischer, A., Schild, D., and Zimmermann, W.H. (2020). Developmental GABA polarity switch and neuronal plasticity in Bioengineered Neuronal Organoids. Nat. Commun. 11, 3791.   DOI
42 Goyal, G. and Nam, Y. (2011). Neuronal micro-culture engineering by microchannel devices of cellular scale dimensions. Biomed. Eng. Lett. 1, 89-98.   DOI
43 Ricoult, S.G., Goldman, J.S., Stellwagen, D., Juncker, D., and Kennedy, T.E. (2012). Generation of microisland cultures using microcontact printing to pattern protein substrates. J. Neurosci. Methods 208, 10-17.   DOI
44 Roth, S., Bisbal, M., Brocard, J., Bugnicourt, G., Saoudi, Y., Andrieux, A., Gory-Faure, S., and Villard, C. (2012). How morphological constraints affect axonal polarity in mouse neurons. PLoS One 7, e33623.   DOI
45 Millet, L.J., Stewart, M.E., Nuzzo, R.G., and Gillette, M.U. (2010). Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10, 1525-1535.   DOI
46 Lantoine, J., Grevesse, T., Villers, A., Delhaye, G., Mestdagh, C., Versaevel, M., Mohammed, D., Bruyere, C., Alaimo, L., Lacour, S.P., et al. (2016). Matrix stiffness modulates formation and activity of neuronal networks of controlled architectures. Biomaterials 89, 14-24.   DOI
47 Feldt, S., Bonifazi, P., and Cossart, R. (2011). Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci. 34, 225-236.   DOI
48 Fruncillo, S., Su, X.D., Liu, H., and Wong, L.S. (2021). Lithographic processes for the scalable fabrication of micro- and nanostructures for biochips and biosensors. ACS Sens. 6, 2002-2024.   DOI
49 Kanagasabapathi, T.T., Massobrio, P., Barone, R.A., Tedesco, M., Martinoia, S., Wadman, W.J., and Decre, M.M. (2012). Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device. J. Neural Eng. 9, 036010.   DOI
50 Kang, G., Lee, J.H., Lee, C.S., and Nam, Y. (2009). Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing. Lab Chip 9, 3236-3242.   DOI
51 Bisio, M., Bosca, A., Pasquale, V., Berdondini, L., and Chiappalone, M. (2014). Emergence of bursting activity in connected neuronal sub-populations. PLoS One 9, e107400.   DOI
52 Hardelauf, H., Sisnaiske, J., Taghipour-Anvari, A.A., Jacob, P., Drabiniok, E., Marggraf, U., Frimat, J.P., Hengstler, J.G., Neyer, A., van Thriel, C., et al. (2011). High fidelity neuronal networks formed by plasma masking with a bilayer membrane: analysis of neurodegenerative and neuroprotective processes. Lab Chip 11, 2763-2771.   DOI
53 Hosmane, S., Yang, I.H., Ruffin, A., Thakor, N., and Venkatesan, A. (2010). Circular compartmentalized microfluidic platform: study of axon-glia interactions. Lab Chip 10, 741-747.   DOI
54 Lee, N., Park, J.W., Kim, H.J., Yeon, J.H., Kwon, J., Ko, J.J., Oh, S.H., Kim, H.S., Kim, A., Han, B.S., et al. (2014). Monitoring the differentiation and migration patterns of neural cells derived from human embryonic stem cells using a microfluidic culture system. Mol. Cells 37, 497-502.   DOI
55 Baek, N.S., Kim, Y.H., Han, Y.H., Lee, B.J., Kim, T.D., Kim, S.T., Choi, Y.S., Kim, G.H., Chung, M.A., and Jung, S.D. (2011). Facile photopatterning of polyfluorene for patterned neuronal networks. Soft Matter 7, 10025-10031.   DOI
56 Bani-Yaghoub, M., Tremblay, R., Voicu, R., Mealing, G., Monette, R., Py, C., Faid, K., and Silkorska, M. (2005). Neurogenesis and neuronal communication on micropatterned neurochips. Biotechnol. Bioeng. 92, 336-345.   DOI
57 Kleinfeld, D., Kahler, K.H., and Hockberger, P.E. (1988). Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8, 4098-4120.   DOI
58 Ryu, J.R., Jang, M.J., Jo, Y., Joo, S., Lee, D.H., Lee, B.Y., Nam, Y., and Sun, W. (2016). Synaptic compartmentalization by micropatterned masking of a surface adhesive cue in cultured neurons. Biomaterials 92, 46-56.   DOI
59 Schroeter, M.S., Charlesworth, P., Kitzbichler, M.G., Paulsen, O., and Bullmore, E.T. (2015). Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J. Neurosci. 35, 5459-5470.   DOI
60 Shein-Idelson, M., Cohen, G., Ben-Jacob, E., and Hanein, Y. (2016). Modularity induced gating and delays in neuronal networks. PLoS Comput. Biol. 12, e1004883.   DOI
61 Jang, M.J. and Nam, Y. (2012). Geometric effect of cell adhesive polygonal micropatterns on neuritogenesis and axon guidance. J. Neural Eng. 9, 046019.   DOI
62 Chang, J.C., Brewer, G.J., and Wheeler, B.C. (2001). Modulation of neural network activity by patterning. Biosens. Bioelectron. 16, 527-533.   DOI
63 Corey, J.M., Wheeler, B.C., and Brewer, G.J. (1991). Compliance of hippocampal-neurons to patterned substrate networks. J. Neurosci. Res. 30, 300-307.   DOI
64 Downes, J.H., Hammond, M.W., Xydas, D., Spencer, M.C., Becerra, V.M., Warwick, K., Whalley, B.J., and Nasuto, S.J. (2012). Emergence of a small-world functional network in cultured neurons. PLoS Comput. Biol. 8, e1002522.   DOI
65 Edwards, D., Stancescu, M., Molnar, P., and Hickman, J.J. (2013). Two cell circuits of oriented adult hippocampal neurons on self-assembled monolayers for use in the study of neuronal communication in a defined system. ACS Chem. Neurosci. 4, 1174-1182.   DOI
66 Erickson, J., Tooker, A., Tai, Y.C., and Pine, J. (2008). Caged neuron MEA: a system for long-term investigation of cultured neural network connectivity. J. Neurosci. Methods 175, 1-16.   DOI
67 Joo, S., Kim, J.Y., Lee, E., Hong, N., Sun, W., and Nam, Y. (2015). Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells. Sci. Rep. 5, 13043.   DOI
68 Joo, S., Lim, J., and Nam, Y. (2018). Design and fabrication of miniaturized neuronal circuits on microelectrode arrays using agarose hydrogel micro-molding technique. Biochip J. 12, 193-201.   DOI
69 Jungblut, M., Knoll, W., Thielemann, C., and Pottek, M. (2009). Triangular neuronal networks on microelectrode arrays: an approach to improve the properties of low-density networks for extracellular recording. Biomed. Microdevices 11, 1269-1278.   DOI
70 Shi, P., Shen, K., and Kam, L.C. (2007). Local presentation of L1 and N-cadherin in multicomponent, microscale patterns differentially direct neuron function in vitro. Dev. Neurobiol. 67, 1765-1776.   DOI
71 Slavik, J., Cmiel, V., Hubalek, J., Yang, Y., and Ren, T.L. (2021). Hippocampal neurons' alignment on quartz grooves and parylene cues on quartz substrate. Appl. Sci. (Basel) 11, 275.   DOI
72 Shelly, M., Lim, B.K., Cancedda, L., Heilshorn, S.C., Gao, H.F., and Poo, M.M. (2010). Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 327, 547-552.   DOI
73 le Feber, J., Postma, W., de Weerd, E., Weusthof, M., and Ruffen, W.L.C. (2015). Barbed channels enhance unidirectional connectivity between neuronal networks cultured on multi electrode arrays. Front. Neurosci. 9, 412.
74 Okano, K., Yu, D., Matsui, A., Maezawa, Y., Hosokawa, Y., Kira, A., Matsubara, M., Liau, I., Tsubokawa, H., and Masuhara, H. (2011). Induction of cell-cell connections by using in situ laser lithography on a perfluoroalkyl-coated cultivation platform. Chembiochem 12, 795-801.   DOI
75 Suzuki, I., Sugio, Y., Jimbo, Y., and Yasuda, K. (2005). Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individual-cell-based electrophysiological measurement. Lab Chip 5, 241-247.   DOI
76 Suzuki, I., Sugio, Y., Moriguchi, H., Jimbo, Y., and Yasuda, K. (2004). Modification of a neuronal network direction using stepwise photo-thermal etching of an agarose architecture. J. Nanobiotechnology 2, 7.   DOI
77 Suzuki, M., Ikeda, K., Yamaguchi, M., Kudoh, S.N., Yokoyama, K., Satoh, R., Ito, D., Nagayama, M., Uchida, T., and Gohara, K. (2013). Neuronal cell patterning on a multi-electrode array for a network analysis platform. Biomaterials 34, 5210-5217.   DOI
78 Takayama, Y., Moriguchi, H., Kotani, K., Suzuki, T., Mabuchi, K., and Jimbo, Y. (2012). Network-wide integration of stem cell-derived neurons and mouse cortical neurons using microfabricated co-culture devices. Biosystems 107, 1-8.   DOI
79 Moutaux, E., Charlot, B., Genoux, A., Saudou, F., and Cazorla, M. (2018a). An integrated microfluidic/microelectrode array for the study of activity-dependent intracellular dynamics in neuronal networks. Lab Chip 18, 3425-3435.   DOI
80 Neto, E., Leitao, L., Sousa, D.M., Alves, C.J., Alencastre, I.S., Aguiar, P., and Lamghari, M. (2016). Compartmentalized microfluidic platforms: the unrivaled breakthrough of in vitro tools for neurobiological research. J. Neurosci. 36, 11573-11584.   DOI
81 Takeuchi, A., Nakafutami, S., Tani, H., Mori, M., Takayama, Y., Moriguchi, H., Kotani, K., Miwa, K., Lee, J.K., Noshiro, M., et al. (2011). Device for co-culture of sympathetic neurons and cardiomyocytes using microfabrication. Lab Chip 11, 2268-2275.   DOI
82 Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., and Jeon, N.L. (2005). A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat. Methods 2, 599-605.   DOI
83 Taylor, A.M., Dieterich, D.C., Ito, H.T., Kim, S.A., and Schuman, E.M. (2010). Microfluidic local perfusion chambers for the visualization and manipulation of synapses. Neuron 66, 57-68.   DOI
84 Ullo, S., Nieus, T.R., Sona, D., Maccione, A., Berdondini, L., and Murino, V. (2014). Functional connectivity estimation over large networks at cellular resolution based on electrophysiological recordings and structural prior. Front. Neuroanat. 8, 137.   DOI
85 Taylor, A.M., Menon, S., and Gupton, S.L. (2015). Passive microfluidic chamber for long-term imaging of axon guidance in response to soluble gradients. Lab Chip 15, 2781-2789.   DOI
86 Hong, N. and Nam, Y. (2020). Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro. Nat. Commun. 11, 6313.   DOI
87 Vogt, A.K., Wrobel, G., Meyer, W., Knoll, W., and Offenhausser, A. (2005). Synaptic plasticity in micropatterned neuronal networks. Biomaterials 26, 2549-2557.   DOI
88 Wang, Y., Xu, Z., Kam, L.C., and Shi, P. (2014). Site-specific differentiation of neural stem cell regulated by micropatterned multicomponent interfaces. Adv. Healthc. Mater. 3, 214-220.   DOI
89 Peyrin, J.M., Deleglise, B., Saias, L., Vignes, M., Gougis, P., Magnifico, S., Betuing, S., Pietri, M., Caboche, J., Vanhoutte, P., et al. (2011). Axon diodes for the reconstruction of oriented neuronal networks in microfluidic chambers. Lab Chip 11, 3663-3673.   DOI
90 Stenger, D.A., Hickman, J.J., Bateman, K.E., Ravenscroft, M.S., Ma, W., Pancrazio, J.J., Shaffer, K., Schaffner, A.E., Cribbs, D.H., and Cotman, C.W. (1998). Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons. J. Neurosci. Methods 82, 167-173.   DOI
91 von Philipsborn, A.C., Lang, S., Loeschinger, J., Bernard, A., David, C., Lehnert, D., Bonhoeffer, F., and Bastmeyer, M. (2006). Growth cone navigation in substrate-bound ephrin gradients. Development 133, 2487-2495.   DOI
92 Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.Y., and Ingber, D.E. (2001). Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335-373.   DOI
93 Yamamoto, H., Okano, K., Demura, T., Hosokawa, Y., Masuhara, H., Tanii, T., and Nakamura, S. (2011). In-situ guidance of individual neuronal processes by wet femtosecond-laser processing of self-assembled monolayers. Appl. Phys. Lett. 99, 163701.   DOI
94 Yamamoto, H., Moriya, S., Ide, K., Hayakawa, T., Akima, H., Sato, S., Kubota, S., Tanii, T., Niwano, M., Teller, S., et al. (2018). Impact of modular organization on dynamical richness in cortical networks. Sci. Adv. 4, eaau4914.   DOI