• Title/Summary/Keyword: Neuro-adaptive controller

Search Result 86, Processing Time 0.024 seconds

Tracking Control for Robot Manipulators based on Radial Basis Function Networks

  • Lee, Min-Jung;Park, Jin-Hyun;Jun, Hyang-Sig;Gahng, Myoung-Ho;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.285-288
    • /
    • 2005
  • Neural networks are known as kinds of intelligent strategies since they have learning capability. There are various their applications from intelligent control fields; however, their applications have limits from the point that the stability of the intelligent control systems is not usually guaranteed. In this paper we propose a neuro-adaptive controller for robot manipulators using the radial basis function network(RBFN) that is a kind of a neural network. Adaptation laws for parameters of the RBFN are developed based on the Lyapunov stability theory to guarantee the stability of the overall control scheme. Filtered tracking errors between the actual outputs and desired outputs are discussed in the sense of the uniformly ultimately boundedness(UUB). Additionally, it is also shown that the parameters of the RBFN are bounded. Experimental results for a SCARA-type robot manipulator show that the proposed neuro-adaptive controller is adaptable to the environment changes and is more robust than the conventional PID controller and the neuro-controller based on the multilayer perceptron.

  • PDF

Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계)

  • Park, Jang-Hyeon;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

A Sensorless MPPT Control Using an Adaptive Neuro-Fuzzy Logic for PV Battery Chargers (태양광 배터리 충전기를 위한 적응형 신경회로망-퍼지로직 기반의 센서리스 MPPT 제어)

  • Kim, Jung-Hyun;Kim, Gwang-Seob;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this paper, the sensorless MPPT algorithm is proposed where the performance of varied duty ratio change has been improved using multi-layer neuro-fuzzy that aligns with neuro-fuzzy based optimized membership function. Since the change of duty ratio of sensorless MPPT is varied by using the neuro-fuzzy, the MPPT response speed is faster than the convectional method and is able to reduce the steady-state ripple. The neuro fuzzy controller has the response characteristics which is superior to the existing fuzzy controller, because of the usage of the optimal width of the fuzzy membership function. The effectiveness of the proposed method has been verified by simulations and experimental results.

The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip (TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계)

  • 하석흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF

A neuro-fuzzy adaptive controller

  • Chung, Hee-Tae;Lee, Hyun-Cheol;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.261-264
    • /
    • 1992
  • This paper proposes a neuro-fuzzy adaptive controller which includes the procedure of initializing the identification neural network(INN) and that of learning the control neural network(CNN). The identification neural network is initialized with the informations of the plant which are obtained by a fuzzy controller and the control neural network is trained by the weight informations of the identification neural network during on-line operation.

  • PDF

Design of Neuro-Fuzzy-based Predictive Controller for Nonlinear Systems with Time Delay (지연시간을 갖는 비선형 시스템을 위한 퍼지-신경망 기반 예측제어기 설계)

  • Kim, Sung-Ho;Kim, Joo-Whan;Lee, Young-Sam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.144-150
    • /
    • 2002
  • In this paper a design of neuro-fuzzy-based predictive controller for nonlinear systems with time-delay is proposed. The proposed control system contains two neuro-fuzzy systems called ANFIS(Adaptive Neuro-Fuzzy Inference System). One is run as a series-parallel mode and the other is run as a parallel mode. An ANFIS running in series-parallel mode emulates the response of the nonlinear system with time-delay. Another ANFIS running in parallel mode generates the predicted output of the nonlinear system to compensate for the time-delays. Therefore, the proposed control system can be thought of as an extension of Smith-predictor scheme to the nonlinear systems with time-delay. A detailed design Procedure is presented and finally computer simulations are executed for the effectiveness of the proposed control scheme.

Adaptive Learning Control fo rUnknown Monlinear Systems by Combining Neuro Control and Iterative Learning Control (뉴로제어 및 반복학습제어 기법을 결합한 미지 비선형시스템의 적응학습제어)

  • 최진영;박현주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.9-15
    • /
    • 1998
  • This paper presents an adaptive learning control method for unknown nonlinear systems by combining neuro control and iterative learning control techniques. In the present control system, an iterative learning controller (ILC) is used for a process of short term memory involved in a temporary adaptive and learning manipulation and a short term storage of a specific temporary action. The learning gain of the iterative learning law is estimated by using a neural network for an unknown system except relative degrees. The control informations obtained by ILC are transferred to a long term memory-based feedforward neuro controller (FNC) and accumulated in it in addition to the previously stored infonnations. This scheme is applied to a two link robot manipulator through simulations.

  • PDF

Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • Kim, Sung-Ho;Kang, Jung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

Neuro-Fuzzy Observer Design for Speed control of AC Servo Motor (교류 서보 전동기의 속도제어를 위한 뉴로-퍼지 관측기설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Yoon, Kwang-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.170-173
    • /
    • 2005
  • This paper presents an Fuzzy-Neuro Observer system for an ac servo motor dirve to track periodic commands using a neuro-fuzzy observer. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF