• Title/Summary/Keyword: Neuro-Fuzzy 모형

Search Result 45, Processing Time 0.032 seconds

A Study on Prediction of Wake Distribution by Neuro-Fuzzy System (뉴로퍼지시스템에 의한 반류분포 추정에 관한 연구)

  • Shin, Sung-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Wake distribution data of stem flow fields have been accumulated systematically by model tests. If the correlation between geometrical hull information and wake distribution is grasped through the accumulated data, this correlation can be helpful to designing similar ships. In this paper, Neuro-Fuzzy system that is emerging as a new knowledge over a wide range of fields nowadays is tried to estimate the wake distribution on the propeller plan. Neuro-Fuzzy system is well known as one of prospective and representative analysis method for prediction, classification, diagnosis of real complicated world problem, and it is widely applied even in the engineering fields. For this study three-dimensional stern hull forms and nominal wake values from a model test ate structured as processing elements of input and output layer, respectively. The proposed method is proved as an useful technique in ship design by comparing measured wake distribution with predicted wake distribution.

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Real Time Water Quality Forecasting at Dalchun Using Nonlinear Stochastic Model (추계학적 비선형 모형을 이용한 달천의 실시간 수질예측)

  • Yeon, In-sung;Cho, Yong-jin;Kim, Geon-heung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.738-748
    • /
    • 2005
  • Considering pollution source is transferred by discharge, it is very important to analyze the correlation between discharge and water quality. And temperature also influent to the water quality. In this paper, it is used water quality data that was measured DO (Dissolved Oxygen), TOC (Total Organic Carbon), TN (Total Nitrogen), TP (Total Phosphorus) at Dalchun real time monitoring stations in Namhan river. These characteristics were analyzed with the water quality of rainy and nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water quality forecasting models were applied. LMNN (Levenberg-Marquardt Neural Network), MDNN (MoDular Neural Network), and ANFIS (Adaptive Neuro-Fuzzy Inference System) models have achieved the highest overall accuracy of TOC data. LMNN and MDNN model which are applied for DO, TN, TP forecasting shows better results than ANFIS. MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. If some data has periodical properties, it seems effective using qualitative data to forecast.

Comparison and analysis of data-derived stage prediction models (자료 지향형 수위예측 모형의 비교 분석)

  • Choi, Seung-Yong;Han, Kun-Yeun;Choi, Hyun-Gu
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.547-565
    • /
    • 2011
  • Different types of schemes have been used in stage prediction involving conceptual and physical models. Nevertheless, none of these schemes can be considered as a single superior model. To overcome disadvantages of existing physics based rainfall-runoff models for stage predicting because of the complexity of the hydrological process, recently the data-derived models has been widely adopted for predicting flood stage. The objective of this study is to evaluate model performance for stage prediction of the Neuro-Fuzzy and regression analysis stage prediction models in these data-derived methods. The proposed models are applied to the Wangsukcheon in Han river watershed. To evaluate the performance of the proposed models, fours statistical indices were used, namely; Root mean square error(RMSE), Nash Sutcliffe efficiency coefficient(NSEC), mean absolute error(MAE), adjusted coefficient of determination($R^{*2}$). The results show that the Neuro-Fuzzy stage prediction model can carry out the river flood stage prediction more accurately than the regression analysis stage prediction model. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model (유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용)

  • Yeon, In-Sung;Ahn, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.565-574
    • /
    • 2005
  • It is used water quality data that was measured at Pyeongchanggang real time monitoring stations in Namhan river. These characteristics were analyzed with the water qualify of rainy and nonrainy periods. TOC (Total Organic Carbon) data of rainy periods has correlation with discharge and shows high values of mean, maximum, and standard deviation. DO (Dissolved Oxygen) value of rainy periods is lower than those of nonrainy periods. Input data of the water quality forecasting models that they were constructed by neural network and neuro-fuzzy was chosen as the reasonable data, and water qualify forecasting models were applied. LMNN, MDNN, and ANFIS models have achieved the highest overall accuracy of TOC data. LMNN (Levenberg-Marquardt Neural Network) and MDNN (MoDular Neural Network) model which are applied for DO forecasting shows better results than ANFIS (Adaptive Neuro-Fuzzy Inference System). MDNN model shows the lowest estimation error when using daily time, which is qualitative data trained with quantitative data. The observation of discharge and water quality are effective at same point as well as same time for real time management. But there are some of real time water quality monitoring stations far from the T/M water stage. Pyeongchanggang station is one of them. So discharge on Pyeongchanggang station was calculated by developed runoff neural network model, and the water quality forecasting model is linked to the runoff forecasting model. That linked model shows the improvement of waterquality forecasting.

A Study on the Analysis of Bicycle Road Service Level by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 자전거도로 서비스수준 분석에 관한 연구)

  • Kim, Kyung Whan;Jo, Gyu Boong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.217-225
    • /
    • 2011
  • Currently our country has very serious problems of traffic congestion and urban environment due to increasing automobile ownership. Recently, our concern about environmentally sustainable transportation and green transportation is increasing, so the government is pushing ahead the policy of bicycle using activation. So it is needed to develop a model to analyze the service level of bicycle roads more realistically. In this study, a neuro-fuzzy inference model to analyze the service level of bicycle roads was built selecting the width of bicycle roads, the number of conflicts during cycling and pedestrian volume, which have fuzzy characteristics, as input variables. The predictability of the model was evaluated comparing the surveyed and the estimated. The values of the statistics, $R^2$, MAE and MSE were 0.987, 0.142, 0.032. Therefore, It may be judged that the explainability of the model is very high. The service levels of bicyle roads estimated by the model are 1~3 steps lower than KHCM assessments. The reason may be explained that the model estimates the service level considering the width of bicycle roads and the number of conflicts simultaneously besides pedestrian volume.

Inflow Estimation into Chungju Reservoir Using RADAR Forecasted Precipitation Data and ANFIS (RADAR 강우예측자료와 ANFIS를 이용한 충주댐 유입량 예측)

  • Choi, Changwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.857-871
    • /
    • 2013
  • The interest in rainfall observation and forecasting using remote sensing method like RADAR (Radio Detection and Ranging) and satellite image is increased according to increased damage by rapid weather change like regional torrential rain and flash flood. In this study, the basin runoff was calculated using adaptive neuro-fuzzy technique, one of the data driven model and MAPLE (McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as one of the input variables. The flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated. Six rainfall events occurred at flood season in 2010 and 2011 in Chungju Reservoir basin were used for the input data. The flood estimation results according to the rainfall data used as training, checking and testing data in the model setup process were compared. The 15 models were composed of combination of the input variables and the results according to change of clustering methods were compared and analysed. From this study was that using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation. The model using MAPLE forecasted precipitation data showed relatively better result at inflow estimation Chungju Reservoir.

Computation of Optimal Path for Pedestrian Reflected on Mode Choice of Public Transportation in Transfer Station (대중교통 수단선택과 연계한 복합환승센터 내 보행자 최적경로 산정)

  • Yoon, Sang-Won;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.45-56
    • /
    • 2007
  • As function and scale of the transit center get larger, the efficient guidance system in the transit center is essential for transit users in order to find their efficient routes. Although there are several studies concerning optimal path for the road, but insufficient studies are executed about optimal path inside the building. Thus, this study is to develop the algorithm about optimal path for car owner from the basement parking lot to user's destination in the transfer station. Based on Dijkstra algorithm which calculate horizontal distance, several factors such as fatigue, freshness, preference, and required time in using moving devices are objectively computed through rank-sum and arithmetic-sum method. Moreover, optimal public transportation is provided for transferrer in the transfer station by Neuro-Fuzzy model which is reflected on people's tendency about public transportation mode choice. Lastly, some scenarios demonstrate the efficiency of optimal path algorithm for pedestrian in this study. As a result of verification the case through the model developed in this study is 75 % more effective in the scenario reflected on different vertical distance, and $24.5\;{\sim}\;107.7\;%$ more effective in the scenario considering different horizontal distance, respectively.

  • PDF

Flood Estimation Using MAPLE Forecasted Precipitation Data (MAPLE 강우예보자료를 활용한 유출량 예측)

  • Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.984-984
    • /
    • 2012
  • 지구온난화와 기후변화의 영향으로 전 지구적으로 이상홍수, 이상가뭄, 한파와 같은 이상기상 현상이 빈번하게 발생하고 있다. 국내에서는 2010년 추석 광화문 침수사태와 2011년 우면산 산사태와 같은 국지성 집중호우로 인한 인적 물적 피해가 속출하고 있다. 전통적으로 시기나 양적인 측면에서 대부분 장마기간에 국한되었던 강우집중현상이 과거와 달리 특정기간에 상관없이 발생하고 단기성, 국지성을 지닌 호우의 발생빈도가 높아지는 등 국내 강우의 특성이 변하고 있다. 이러한 변화에 대응하기 위해서 강우예측과 유출량예측의 정확도를 높이기 위한 시도가 다양하게 이루어지고 있다. 강우예측의 정확성을 높이기 위해 기상청에서는 단기예보를 목적으로 전지구 통합모델과 지역 통합모델을 연계한 동네예보를 수행하고 있으며, 초단기 예보를 위한 목적으로 VSRF, SCAN, VDRAS, MAPLE 등의 예보를 수행하고 있다. 홍수량 예측에서는 일반적으로 사용하고 있는 물리적 기반의 모형에 레이더강우와 같은 격자형 강우자료를 사용하여 정확성을 높이거나, 기존의 집중형 모형을 분포형 모형으로 대체하기 위한 연구 등이 이루어지고 있으며, 모형 구축이 간편하고 예측 정확도가 우수하다는 장점으로 인해 신경회로망이나 퍼지추론기법 등을 사용한 연구도 지속적으로 이루어지고 있다. 본 연구에서는 수자원분야에 산재한 불확실성을 적극적으로 인정하고 수학적으로 해석하기 위한 이론인 퍼지이론에 신경망 이론을 도입한 neuro-fuzzy 기법을 사용하여 홍수량을 예측하였다. 모형의 입력자료로는 관측된 강우자료와 유출량자료 및 기상청에서 제공하는 MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) 강우예측자료를 사용하여 적용성을 평가해보았다. 모형의 적용성을 평가하기 위해 시험유역을 충주댐 상류 유역으로 선정하였으며, 2010년 2011년 홍수기의 충주댐 유입량을 예측하였다. 모형의 입력자료를 변경하여 입력자료의 변화에 따른 결과를 비교하였고, clustering 반경의 변화에 따른 정확도를 비교하였다. 모형의 정확도는 평균제곱근오차와 첨두수위오차를 통해 비교하였으며, 비교결과 전반적으로 lead time이 길어질수록 MAPLE 사용 시 예측 정확도가 우수하였고, clustering 반경은 0.5일 때 가장 우수한 결과를 보였다.

  • PDF