• Title/Summary/Keyword: Neuro 2A cell

Search Result 77, Processing Time 0.027 seconds

Effects of Radicicol on the Metabolism of ${\beta}-Amyloid$ Precursor Protein in Neuroblastoma Cells (Radicicol이 신경세포에서 베타 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Leem, Jae-Yoon;Lee, Ri-Hua;Lee, Kyung-A;Gong, Du-Gyun;Choi, Bu-Jin;Lee, Choong-Soo;Eun, Jae-Soon
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.264-269
    • /
    • 2007
  • Alzheimer’s disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}-amyloid $ (A ${\beta}$) peptides, which are generated by processing of amyloid precursor protein (APP). It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have effects on the mechanism of memory formation. In this study, effects of radicicol on the metabolism of APP were analyzed. Radicicol inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing APPswe. Beta-site APP cleaving enzyme (BACE) fluorescence resonance energy transfer (FRET) assay revealed that it inhibited BACE activity in a dose dependently manner. Immunoblotting study showed that it inhibited intracellular heat shock protein (HSP)90 and it increased the secretion of HSP90 from the APPswe cells. We suggest that radicicol inhibits APP metabolism and Ap generation by the means of HSP90 inhibitory mechanism and partially BACE inhibitory mechanism. This is the first report that radicicol inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Chemical Composition and Protective Effect of Essential Oils Derived from Medicinal Plant on PC12 Neuro-cells Induced by Oxidative Stress (약용식물 유래 정유성분 분석 및 산화 스트레스로부터 PC12 신경세포 보호 효과)

  • Lee, Ji Yeon;Park, Jeong-Yong;Kim, Dong Hwi;Choi, Su Ji;Jang, Gwi Young;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.33 no.2
    • /
    • pp.215-221
    • /
    • 2020
  • The purpose of this study was to investigate the protective effect on oxidative stress induced PC12 cells, and volatile flavor composition of essential oils derived from medicinal plant seeds- Gossypium hirsutum L. (G. hirsutum), Coix lachryma-jobi (C. lachryma-jobi) and Oenothera biennis (O. biennis). The essential oils were obtained by the solvent (hexane) extraction method from the seeds. The essential oils of the seeds were analyzed by the solid-phase micro-extraction gas chromatography mass spectrometry (SPME-GC/MS). The major compounds of G. hirsutum, C. lachryma-jobi and O. biennis were cyclonexanol (16.65%), β-asarone (14.29%) and ylangene (50.01%). The DPPH radical scavenging activity (IC50) was the highest value of 8.52 mg/mL in the O. biennis. Additionally, IC50 values of G. hirsutum and C. lachryma-jobi were 26.76 mg/mL and 36.81 mg/mL. For the oxidative stress on PC12 cells, we treated with hydrogen peroxide (H2O2). The pretreatment of oxidative stress induced PC12 cells with all the essential oils preserved or increased their cell viability and G. hirsutum and O. biennis attenuated the ROS generation (by 68.75% and 56.25% vs. H2O2 control). The results of this study suggest that the essential oils derived from medicinal plant seeds could be used as valuable back data as a natural essential oil material to prevent neurodegenerative diseases by protecting neuro-cells.

Neuro-inflammation induced by restraint stress causes impairs neurobehavior in mice (스트레스 유발 마우스모델에서 뇌염증 및 신경행동 장애 변화)

  • Oh, Tae woo;Do, Hyun Ju;Kim, Kwang-Youn;Kim, Young Woo;Lee, Byung Wook;Ma, Jin Yeul;Park, Kwang Il
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.483-497
    • /
    • 2017
  • Background : Behavioral stress has been suggested as one of the significant factors that is able to disrupt physiological systems and cause depression as well as changes in various body systems. The stressful events can alter cognition, learning, memory and emotional responses, resulting in mental disorders such as depression and anxiety. Results : We used a restraint stress model to evaluate the alteration of behavior and stress-related blood parameter. The animals were randomly divided into two groups of five animals each group. Furthermore, we assessed the change of body weight to evaluate the locomotor activity as well as status of emotional and anxiety in mice. After 7 days of restraint stress, the body weight had significantly decreased in the restraint stress group compared with the control group. We also observed stress-associated behavioral alterations, as there was a significant decrease in open field and forced swim test, whereas the immobilization time was significantly increased in the stress group compared to the control group. We observed the morphological changes of neuronal death and microglia by immunohistochemistry and western blot. In our study restraint stress did not cause change in neuronal cell density in the frontal cortex and CA1 hippocampus region, but there was a trend for an increased COX-2 and iNOS protein expression and microglia (CD11b) in brain, which is restraint stress. Conclusion : Our study, there were significant alterations observed in the behavioral studies. We found that mice undergoing restraint stress changed behavior, confirming the increased expression of inflammatory factors in the brain.

Regulation of Inflammatory Repertoires and NF-${\kappa}B$ Signal Transduction by DDB, an Active Compound from Schizandra Chinensis Baillon (오미자 활성성분 DDB의 NF-${\kappa}B$ 신호 전달 및 염증물질 발현 조절)

  • Joo, Seong-Soo;Yoo, Yeong-Min;Won, Tae-Joon;Kim, Min-Jung;Lee, Seon-Goo;Hwang, Kwang-Woo;Lee, Do-Ik
    • IMMUNE NETWORK
    • /
    • v.6 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • Background: Chronic inflammation in the brain has known to be associated with the development of a various neurological diseases including dementia. In general, the characteristic of neuro-inflammation is the activated microglia over the brain where the pathogenesis occurs. Pro-inflammatory repertoires, interleukin-1${\beta}$ (IL-1${\beta}$) and nitric oxide (NO), are the main causes of neuro-degenerative disease, particularly in Alzheimer's disease (AD) which is caused by neuronal destruction. Those pro-inflammatory repertoires may lead the brain to chronic inflammatory status, and thus we hypothesized that chronic inflammation would be inhibited when pro-inflammatory repertoires are to be well controlled by inactivating the signal transduction associated with inflammation. Methods: In the present study, we examined whether biphenyl dimethyl dicarboxylate (DDB), an active compound from Schizandra chinensis Baillon, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS) and IL-1${\beta}$. Western blots were also used for the analysis of NF-${\kappa}B$ and I${\kappa}B$. Results: In the study, we found that DDB effectively inhibited IL-1${\beta}$ as well as NO production in BV-2 microglial cell, and the translocation of NF-${\kappa}B$ was comparably inhibited in the presence of DDB comparing those to the positive control, lipopolysaccharide. Conclusion: The data suggested that the DDB from Schizandra chinensis Baillon may play an effective role in inhibiting the pro-inflammatory repertoires which may cause neurodegeneration and the results imply that the compound suppresses a cue signal of the microglial activation which can induce the brain pathogenesis such as Alzheimer's disease.

The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향)

  • Chandra, Shrestha Abinash;Kim, Ju Eun;Ham, Ha Neul;Jo, Youn Jeong;Bach, Tran The;Eum, Sang Mi;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

Effect of Ethanol on the PKC Isozyme Activities in B103 Neuroblastoma Cells (에탄올이 신경아세포종 B103세포의 Protein Kinase C Isozyme 활성에 미치는 영향)

  • 조효정;정영진;진승하;오우균;김상원;강은정;박진규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.262-270
    • /
    • 2004
  • It is well known that long-term heavy ethanol intake causes alcoholic dementia, cerebellar degeneracy or Wernicke-Korsakoff syndrome and aggravates the conditions of many other neuro-psychotic disorders. Recently it is indicated that protein kinase C (PKC) plays an important role in the action of ethanol and in the neuro-adaptational mechanisms under chronic ethanol exposure. In order to investigate the effect of ethanol on PKC isoforms levels within the range of not showing any cytotoxicity, B103 neuroblastoma cell line trans-formed from murine central nervous system was employed and western blot analysis was carried out by using PKC isoform-specific antibodies. The changes of PKC-$\alpha$, ${\gamma}$, $\varepsilon$ and ζ level in the range of ethanol concentration 50∼200 mM were examined at the exposure time 1, 2, 8, 18 and 24 hrs in both cytosolic and membrane fraction. A typical ethanol concentration inducing the PKC isozymes was 100 mM, and the transforming time ranges of PKC isozymes could be considered as two different parts to each PKC isoform such as initial (0∼2 hrs) and prolonged (8∼24 hrs) stages. PKC-${\gamma}$ and PKC-$\varepsilon$ were clearly induced during the prolonged stages in cytosol at 18 hrs, and membrane fraction at 8 hrs and 18 hrs, respectively. On the other hand the PKC-$\alpha$ and PKC-ζ isozymes were largely induced in the prolonged stages at 18 hrs and 24 hrs, where the PKC-$\alpha$ isozyme was induced in both cytosol and membrane fractions at 200 mM ethanol concentration while the PKC-ζ isozyme was induced only in the membrane fractions at 100,200 mM. At 200 mM ethanol concentration of 24 hrs incubation in the prolonged stage, the PKC-$\alpha$ was maximally induced by 150% of the control values whereas the PKC-${\gamma}$ was significantly decreased to 47% of the control values. These results suggest that 100∼200 mM ethanol may modulate the signal transduction and neurotransmitter release in the central nervous system through the regulation of PKC isozymes, and the action of these isoforms may act differently each other in the cell.

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses

  • Wang, Xiaohu;Zhang, Shoufeng;Sun, Chenglong;Yuan, Zi-Guo;Wu, Xianfu;Wang, Dongxia;Ding, Zhuang;Hu, Rongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.366-373
    • /
    • 2011
  • We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

Executive Summary of the 2021 International Conference of Korean Dementia Association: A Report From the Academic Committee of the Korean Dementia Association

  • Kee Hyung Park;Jae-Won Jang;Jeewon Suh;SangHak Yi;Jae-Sung Bae;Jae-Sung Lim;Hyon Lee;Juhee Chin;Young Ho Park;Yun Jeong Hong;Geon Ha Kim;Academic Committee of the Korean Dementia Association
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.2
    • /
    • pp.45-58
    • /
    • 2022
  • Recently, aducanumab, a beta amyloid targeted immunotherapy, has been approved by the US Food and Drug Administration for the treatment of Alzheimer's dementia (AD). Although many questions need to be answered, this approval provides a promising hope for the development of AD drugs that could be supported by new biomarkers such as blood-based ones and composite neuropsychological tests that can confirm pathologic changes in early stages of AD. It is important to elucidate the complexity of AD which is known to be associated with other factors such as vascular etiologies and neuro-inflammation. Through the second international conference of the Korean Dementia Association (KDA), researchers from all over the world have participated in the exchange of opinions with KDA members on the most up-to-date topics. The Academic Committee of the KDA summarizes lectures to provide the depth of the conference as well as discussions. This will be an important milestone to widen the latest knowledge in the research of AD's diagnosis, therapeutics, pathogenesis that can lead to the establishment of future directions.

Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue (사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화)

  • Hong, In-Kyung;Jeong, Na-Hee;Kim, Ju-Ran;Do, Byung-Rok;Kim, Hea-Kwon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.31-39
    • /
    • 2008
  • Neural tissue has limited intrinsic capacity of repair after injury, and the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesechymal-like stem cells from human adipose tissues (AT-MSCs), and studied on transdifferentiation-promoting conditions in neural cells. Dopaminergic and cholinergic neuron induction of AT-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulphoxide (DMSO) and butylated hydroxyanisole(BHA) in N2 Medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. AT-MSCs treated with bFGF, SHH and FGF8 were differentiatied into dopaminergic neurons that were immunopositive for TH antibody. Differentiation of MSCs to cholinergic neurons was induced by combined treatment with basic fibroblast growth factor (bFGF), retinoic acid (RA) and sonic hedgehog (Shh). AT-MSCs treated with DMSO and BHA rapidly assumed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including neuro D1, $\beta$-tubulin III, GFAP and nestinwas markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after preinduction medium culture, we confirmed the differentiation of dopaminergic and cholinergic neurons by TH/$\beta$-tubulin III or ChAT/ $\beta$-tubulin III positive cells. Conclusively, AT-MSCs can be differentiated into dopaminergic and cholinergic neuronsand these findings suggest that AT-MSCs are alternative cell source of treatment for neurodegenerative diseases.

  • PDF