Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10003

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses  

Wang, Xiaohu (College of Animal Science and Veterinary Medicine, Jilin University)
Zhang, Shoufeng (Laboratory of Epidemiology, Veterinary Research Institute, Academy of Military Medical Sciences)
Sun, Chenglong (College of Animal Science and Veterinary Medicine, Jilin University)
Yuan, Zi-Guo (College of Veterinary Medicine, South China Agricultural University)
Wu, Xianfu (Centers for Disease Control and Prevention)
Wang, Dongxia (Centers for Disease Control and Prevention)
Ding, Zhuang (College of Animal Science and Veterinary Medicine, Jilin University)
Hu, Rongliang (College of Animal Science and Veterinary Medicine, Jilin University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.4, 2011 , pp. 366-373 More about this Journal
Abstract
We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.
Keywords
Rabies virus; differential virulence; viral infection; N2a cell proteome; proteomics;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aoki, H., J. Hayashi, M. Moriyama, Y. Arakawa, and O. Hino. 2000. Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J. Virol. 74: 1736-1741.   DOI   ScienceOn
2 Da Silva-Azevedo, L., S. Jahne, C. Hoffmann, D. Stalder, M. Heller, A. R. Pries, A. Zakrzewicz, and O. Baum. 2009. Upregulation of the peroxiredoxin-6 related metabolism of reactive oxygen species in skeletal muscle of mice lacking neuronal nitric oxide synthase. J. Physiol. 587: 655-668.
3 Dietzschold, B., M. Schnell, and H. Koprowski. 2005. Pathogenesis of rabies. Curr. Top. Microbiol. Immunol. 292: 45-56.
4 Franke, W. W., C. Grund, C. Kuhn, V. P. Lehto, and I. Virtanen. 1984. Transient change of organization of vimentin filaments during mitosis as demonstrated by a monoclonal antibody. Exp. Cell Res. 154: 567-580.   DOI   ScienceOn
5 Harris, D., Z. Zhang, B. Chaubey, and V. N. Pandey. 2006. Identification of cellular factors associated with the 3'-nontranslated region of the hepatitis C virus genome. Mol. Cell. Proteomics 5: 1006-1018.   DOI   ScienceOn
6 Honer, B., R. L. Shoeman, and P. Traub. 1991. Human immunodeficiency virus type 1 protease microinjected into cultured human skin fibroblasts cleaves vimentin and affects cytoskeletal and nuclear architecture. J. Cell Sci. 100(Pt 4): 799-807.
7 Kino, T., A. Gragerov, A. Valentin, M. Tsopanomihalou, G. Ilyina-Gragerova, R. Erwin-Cohen, G. P. Chrousos, and G. N. Pavlakis. 2005. Vpr protein of human immunodeficiency virus type 1 binds to 14-3-3 proteins and facilitates complex formation with Cdc25C: Implications for cell cycle arrest. J. Virol. 79: 2780-2787.   DOI   ScienceOn
8 Zandi, F., N. Eslami, M. Soheili, A. Fayaz, A. Gholami, and B. Vaziri. 2009. Proteomics analysis of BHK-21 cells infected with a fixed strain of rabies virus. Proteomics 9: 2399-2407.   DOI   ScienceOn
9 Xie, H. Y., W. L. Xia, C. C. Zhang, L. M. Wu, H. F. Ji, Y. Cheng, and S. S. Zheng. 2007. Evaluation of hepatitis B virus replication and proteomic analysis of HepG2.2.15 cell line after cyclosporine A treatment. Acta Pharmacol. Sin. 28: 975-984.   DOI   ScienceOn
10 Yano, M., H. J. Okano, and H. Okano. 2005. Involvement of Hu and heterogeneous nuclear ribonucleoprotein K in neuronal differentiation through p21 mRNA post-transcriptional regulation. J. Biol. Chem. 280: 12690-12699.
11 Zheng, X., L. Hong, L. Shi, J. Guo, Z. Sun, and J. Zhou. 2008. Proteomics analysis of host cells infected with infectious bursal disease virus. Mol. Cell. Proteomics 7: 612-625.
12 Zhou, Y., K. H. Kok, A. C. Chun, C. M. Wong, H. W. Wu, M. C. Lin, P. C. Fung, H. Kung, and D. Y. Jin. 2000. Mouse peroxiredoxin V is a thioredoxin peroxidase that inhibits p53- induced apoptosis. Biochem. Biophys. Res. Commun. 268: 921- 927.   DOI   ScienceOn
13 Pallas, D. C., H. Fu, L. C. Haehnel, W. Weller, R. J. Collier, and T. M. Roberts. 1994. Association of polyomavirus middle tumor antigen with 14-3-3 proteins. Science 265: 535-537.   DOI
14 Ostareck, D. H., A. Ostareck-Lederer, M. Wilm, B. J. Thiele, M. Mann, and M. W. Hentze. 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89: 597-606.   DOI   ScienceOn
15 Levesque, K., M. Halvorsen, L. Abrahamyan, L. Chatel-Chaix, V. Poupon, H. Gordon, L. DesGroseillers, A. Gatignol, and A. J. Mouland. 2006. Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 7: 1177-1193.   DOI   ScienceOn
16 Li, H. P., X. Zhang, R. Duncan, L. Comai, and M. M. Lai. 1997. Heterogeneous nuclear ribonucleoprotein A1 binds to the transcription-regulatory region of mouse hepatitis virus RNA. Proc. Natl. Acad. Sci. USA 94: 9544-9549.   DOI   ScienceOn
17 Rhee, S. G., S. W. Kang, T. S. Chang, W. Jeong, and K. Kim. 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52: 35-41.   DOI   ScienceOn
18 Rupprecht, C. E., B. Dietzschold, J. H. Cox, and L. G. Schneider. 1989. Oral vaccination of raccoons (Procyon lotor) with an attenuated (SAD-B19) rabies virus vaccine. J. Wildl. Dis. 25: 548-554.
19 Shi, S. T., G. Y. Yu, and M. M. Lai. 2003. Multiple type A/B heterogeneous nuclear ribonucleoproteins (hnRNPs) can replace hnRNP A1 in mouse hepatitis virus RNA synthesis. J. Virol. 77: 10584-10593.   DOI   ScienceOn
20 Shibayama, H., E. Takai, I. Matsumura, M. Kouno, E. Morii, Y. Kitamura, J. Takeda, and Y. Kanakura. 2004. Identification of a cytokine-induced antiapoptotic molecule anamorsin essential for definitive hematopoiesis. J. Exp. Med. 199: 581-592.   DOI   ScienceOn
21 Nogueira, Y. L. 2004. [Estimate of the validity of a new method for the isolation of rabies virus.] Rev. Saude Publica 38: 315-322.   DOI   ScienceOn
22 Radtke, K., K. Dohner, and B. Sodeik. 2006. Viral interactions with the cytoskeleton: A hitchhiker's guide to the cell. Cell. Microbiol. 8: 387-400.   DOI   ScienceOn
23 Maxwell, K. L. and L. Frappier. 2007. Viral proteomics. Microbiol. Mol. Biol. Rev. 71: 398-411.   DOI   ScienceOn
24 Shoeman, R. L., B. Honer, T. J. Stoller, C. Kesselmeier, M. C. Miedel, P. Traub, and M. C. Graves. 1990. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc. Natl. Acad. Sci. USA 87: 6336-6340.   DOI   ScienceOn
25 Smith, A. L., G. H. Tignor, R. W. Emmons, and J. D. Woodie. 1978. Isolation of field rabies virus strains in CER and murine neuroblastoma cell cultures. Intervirology 9: 359-361.   DOI
26 Stefanovic, S., M. Windsor, K. I. Nagata, M. Inagaki, and T. Wileman. 2005. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J. Virol. 79: 11766-11775.   DOI   ScienceOn
27 Stoltzfus, C. M. and J. M. Madsen. 2006. Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr. HIV Res. 4: 43-55.   DOI   ScienceOn
28 Sun, J., Y. Jiang, Z. Shi, Y. Yan, H. Guo, F. He, and C. Tu. 2008. Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J. Proteome Res. 7: 5263-5269.   DOI   ScienceOn
29 Medeiros Caporale, G. M., C. Rodrigues da Silva Ade, Z. M. Peixoto, L. B. Chaves, M. L. Carrieri, and R. C. Vassao. 2009. First production of fluorescent anti-ribonucleoproteins conjugate for diagnostic of rabies in Brazil. J. Clin. Lab. Anal. 23: 7-13.   DOI   ScienceOn
30 Mhawech, P. 2005. 14-3-3 proteins -- an update. Cell Res. 15: 228-236.   DOI   ScienceOn