• 제목/요약/키워드: Neural stem cell differentiation

검색결과 87건 처리시간 0.023초

사람 지방 유래 중간엽 줄기세포의 도파민성 및 콜린성 신경세포분화 (Differentiation of Dopaminergic and Cholinergic Neurons from Mesenchymal-like Stem Cells Derived from the Adipose Tissue)

  • 홍인경;정나희;김주란;도병록;김해권;강성구
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권1호
    • /
    • pp.31-39
    • /
    • 2008
  • 손상된 뇌신경조직내에서 신경줄기세포로부터 새로운 신경세포로의 분화가 상당히 제한되어 있어 이것이 손상된 뇌신경조직의 복구가 잘 이루어지지 않는 원인이라 여겨지고 있다. 본 연구에서는 세포배양을 통해 지방조직 중간엽 줄기세포를 도파민성 신경세포와 콜린성 신경세포로 분화를 유도하였다. 중간엽 줄기세포를 신경세포로 분화시키기 위해 N2배양액에 bFGF, EGF, dimethyl sulphoxide (DMSO)와 butylated hydroxyanisole (BHA)를 첨가하여 유도하였다. DMSO와 BHA에 처리된 중간엽 줄기세포가 빠르게 신경세포 모양으로 분화하는 것을 관찰하였으며, 이것은 면역조직학적 염색에서 신경세포 특이 표지인 $\beta$-tubulin III, 별아교세포에 대한 특이 표지인 GFAP, 흰돌기아교세포에 대한 특이 표지인 Gal-C에 대해 양성반응을 나타내었다. RT-PCR 분석에서 배양 단계에 따라 신경세포에 특이적인 표지 인자인 neuro D1, $\beta$-tubulin III, GFAP, nestin 등의 발현을 통해, 중간엽 줄기세포가 신경세포로 분화됨을 확인하였다. 그러나 중간엽줄기세포가 신경세포로 분화된 이후에는 줄기세포 표지인 SCF, C-kit와 stat-3 등은 발현되지 않았다. 또한, 중간엽줄기세포에 bFGF, SHH와 FGF8 등을 처리하면 도파민 신경세포로 분화하였다. 중간엽 줄기세포에 bFGF, RA, Shh를 처리하여 콜린성 신경세포로 분화시켰을 때, 신경세포 특이 표지인 $\beta$-tubulin III와 콜린성 신경 특이 표지인 ChAT에 양성반응를 보였다. 결론적으로 사람 지방조직의 중간엽 줄기세포가 도파민성과 콜린성 신경세포로 분화가 가능하고 이러한 잠재성을 가진 지방 유래 중간엽 줄기세포는 퇴행성 신경질환에 대한 세포 치료제로서 가능성을 제시한다.

  • PDF

동결-융해된 인간 배반포기 배 유래의 배아 간(幹) 세포 배양 (Establishment of Human Embryonic Stem Cells Derived from Frozen-Thawed Blastocysts)

  • 김은영;남화경;이금실;박세영;박은미;윤지연;허영태;조현정;박세필;정길생;임진호
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권1호
    • /
    • pp.33-40
    • /
    • 2001
  • Objective: This study was to establish the human embryonic stem (ES) cells derived from frozen-thawed blastocyst stage embryo that were destined to be discarded after five years in routine human IVF-ET program. Methods: Frozen-thawed and survived human blastocysts were treated by immunosurgery, and recovered ICM cells were cultured onto STO feeder cell layer and ICM colony was subcultured by mechanical dissociation into clumps. To identify ES cell, alkaline phosphatase staining and expression of Oct4 in replated ICM colonies were examined. Also, to examine the possibility of ES cell differentiation, retinoic acid (RA), basic fibroblast growth factor (b-FGF), nerve growth factor (NGF) were added in culture medium. In addition, to classify the specific cell type, differentiated cells were stained by indirect immunocytochemistry. Results: One ICM colony recovered from frozen-thawed six blastocysts was subcultured, continuously replated during 40 passage culture duration without differentiation. Subcultured colonies were strong positively stained by alkaline phophatase. When the expression of Oct4 in cultured ES colony was examined, Oct4b type is more clearly indicated than Oct4a one although there was not detected in embryoid body or differentiated cells. In differentiated cardiomyocytes from ES colony, cells were beaten regularly (60 times/min). In differentiated neural cells from ES colony, neurofilament (NF) 200 kDa protein, microtubule associated protein (MAP) 2 and ${\beta}$-tubulin of specific marker in neurons, glial fibrillary acidic protein (GFAP) of specific marker in astrocytes and galactocelebrocide (GalC) of specific marker in oligodendrocytes were confirmed by indirect immunocytochemistry. Also, muscle cells were detected by indirect immunocytochemistry. In addition, ES colonies can be successfully cryopreserved. Conclusion: This study suggested that establishment of human ES cells can be successfully derived from frozen-thawed blastocysts that were destined to be discarded, and obtained specific cell types (cardiomyocytes, neurons and muscle cells) through the in vitro differentiation procedures of ES cells.

  • PDF

Roles of mitochondria in neuronal development

  • Son, Geurim;Han, Jinju
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.549-556
    • /
    • 2018
  • Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria-regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed.

인간 배아 줄기세포와 암 세포에서의 C6orf62의 발현 패턴 (Expression of C6orf62 in Human Embryonic Stem Cells and Cancer Cells)

  • 유한나;류중기;최성준;김진경
    • Reproductive and Developmental Biology
    • /
    • 제34권3호
    • /
    • pp.229-233
    • /
    • 2010
  • Pluripotency and self-renewal capacity of human embryonic stem cells (hESCs) are retained by hESCs related genes as OCT4, SOX2 and NANOG. These genes are shown high expression level in diverse cancer cells and have potential role in the carcinogenesis. On the contrary to this, several genes which are up-regulated in the differentiated hESCs are involved to suppress the carcinogenesis or proliferation of cells. We discovered several genes in immortalized lung fibroblast (WI-38 VA13) by suppression subtractive hybridization. Among them, we focused chromosome 6 open reading frame 62 (C6orf62) which is uncharacterized, mapped to 6p22.3 and generated to Hepatitis B virus X-transactivated proteins (HBVx-transactivated proteins, XTP). Aim of this study was to characterize C6orf62 through analyzing of expression pattern in various cell lines. Expression of C6orf62 was significantly upregulated in diverse normal cell lines than cancer cell lines. And C6orf62 was up-regulated in differentiated hESCs (endothelial cells, neural cells) compared to those of undifferentiated hESCs. Also, C6orf62 in WI-38 cells was highly up-regulated during G1/S transition of the cell cycle. Taken together, C6orf62 is shown expression pattern similar to differentiated hESCs-associated genes which down-regulated in cancer cells. Therefore, we assume that C6orf62 may participate to suppress the proliferation and to induce differentiation through regulating the cell cycle.

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

발생 중인 포유류 망막으로 골수기질세포의 이식 (Transplantation of Marrow Stromal Cells into the Developing Mammal Retina)

  • 이은실;권오주;예은아;전창진
    • 한국안광학회지
    • /
    • 제18권4호
    • /
    • pp.541-548
    • /
    • 2013
  • 목적: 골수기질세포는 생체 내 외에서 신경세포와 신경교세포로 교차분화 할 수 있는 능력을 가지고 있는 것으로 밝혀져 있다. 발생 중인 숙주 환경에 따라 이식된 골수기질세포의 생존여부, 형태학적 그리고 분자적 분화영향을 조사하기 위해 브라질산 주머니쥐 안구에 마우스 골수기질세포를 이식하였다. 방법: GFP를 발현하는 골수기질세포를 발생 중인 브라질산 주머니쥐의 각 시기별로 이식하여, 이식 후 최대 4주까지 생존시킨 후 각 시기별로 면역조직화학법을 시행하였다. 결과: 이식한 골수기질세포의 일부는 숙주동물의 유리체 내에서 생존하며 일부 돌기를 내는 신경세포로 형태학적 분화가 됨을 관찰할 수 있었다. 또한 유리체에 존재하는 일부 세포는 신경세포 표지인자인 TuJ1(class III ${\beta}$-tubulin), 신경교세포 표지인자인 GFAP(glial fibrillary acidic protein), 또는 신경줄기세포 표지인자인 Nestin 단백질을 발현하였다. 게다가, 일부 골수기질세포는 신경절세포층으로 이동함을 관찰했으나, 이동한 세포들은 형태학적 또는 분자적 분화를 나타내지는 않았다. 결론: 이번 연구에서 가장 효율적인 이식시기는 생후 16일째의 포유류 망막으로, 이는 망막세포의 분화양상과 층분화 패턴으로 미뤄볼 때 생후 4~5일 정도의 마우스 망막과 발생학적으로 상동함을 알 수 있었다. 또한 이식 받은 숙주 망막의 미세환경이 이식된 세포운명에 영향을 미치는 것을 확인할 수 있었다.

CTD 탈 인산화 효소의 기능과 역할 (Emerging Roles of CTD Phosphatases)

  • 김영준
    • 생명과학회지
    • /
    • 제27권3호
    • /
    • pp.370-381
    • /
    • 2017
  • 단백질 탈 인산화는 단백질 탈 인산화 효소에 의해 매개되는 과정으로 세포 생존에 매우 중요하다. 단백질 탈 인산화 효소 중에서 최근 CTD (carboxy-terminal domain) 탈 인산화 효소들이 등장하고 있으며 이들에 대한 새로운 생물학적 역할이 밝혀지고 있다. 이 효소의 그룹에는CTD 탈 인산화 효소 1(CTDP1), CTD 소형 탈 인산화 효소 1(CTDSP1), CTD 소형 탈 인산화 효소 2(CTDSP2), CTD 소형 탈 인산화 효소 유사(CTDSPL), CTD 소형 탈 인산화 효소 유사 2(CTDSPL2), CTD 핵 탈 인산화 효소(CTDNEP1) 및 유비퀴틴 유사 도메인 함유CTD 탈 인산화 효소 1(UBLCP1)들이 존재한다. CTDP1은 RNA 중합 효소 II (RNAPII)의 CTD의 두 번째 인산화 된 세린을 탈 인산화 시키고, CTDSP1, STDSP2 및 CTDSPL은 RNAPII의 CTD의 다섯 번째 인산화 된 세린을 탈 인산화 시킨다. 그리고 CTDSP1은 SMAD들, CDCA3, Twist1, 종양억제 단백질인 PML, c-Myc과 같은 새로운 기질을 탈 인산화 시키는 것으로 밝혀지고 있다. CTDP1은 유사 분열 조절 및 암세포 성장과 관련이 있다. CTDSP1, CTDSP2 및 CTDSPL은 종양 억제 기능 및 줄기 세포 분화와 관련이 있다. CTDNEP1은 LIPIN1을 탈 인산화 시키고 핵막 형성과 관련이 있다. CTDSPL2는 조혈 줄기 세포 분화와 관련이 있다. UBLCP1은 26S 프로테아좀을 탈 인산화 시키고 핵 프로테아좀 활성 조절과 관련이 있다. 결론적으로, CTD 탈 인산화 효소의 새로운 기능과 역할은 최근의 연구에서 밝혀지고 있으며, 이 리뷰는 CTD 탈 인산화 효소의 새롭게 밝혀진 역할들을 요약하고자 정리한 것이다.

L-type 칼슘 채널을 저해하는 저해제, nifedipine에 의한 쥐 뇌실하 영역 신경줄기세포의 신경세포로의 분화 촉진 (Increase in Neurogenesis of Neural Stem Cells Cultured from Postnatal Mouse Subventricular Zone by Nifedipine)

  • 박기엽;김만수
    • 생명과학회지
    • /
    • 제32권2호
    • /
    • pp.108-118
    • /
    • 2022
  • 뇌실하 영역은 뇌에서 신경줄기세포가 분포하는 곳으로 평생에 걸쳐 새로운 신경세포를 생성하는 곳이다. 많은 세포 안팎의 인자들이 신경줄기세포의 세포 증식과 신경세포로의 분화에 영향을 미친다. 최근 들어, L-type 칼슘 채널이 신경계의 발달을 조절하고 뇌실하 영역에 있는 신경줄기세포, 신경세포로 분화 중인 세포, 그리고 성숙한 신경세포에 분포한다고 밝혀졌다. L-type 칼슘 채널의 저해제인 nifedipine은 고혈압의 치료제로 오랜 기간 사용되어 왔다. 신경줄기세포에 nifedipine을 사용하여 L-type 칼슘 채널을 저해하는 연구는 많이 없는 상황이다. 이번 연구에서, 우리는 5일령 쥐의 뇌실하 영역에서 배양한 신경줄기세포에 nifedipine을 처리하여 신경세포로의 분화에 미치는 영향을 관찰하였다. Nifedipine은 Tuj1을 발현하는 신경세포의 수를 증가시킨 반면, Olig2를 발현하는 희소 돌기 아교 세포(oligodendrocytes)의 수에는 큰 영향을 미치지 않았다. Nifedipine은 S기를 표지하는 5-ethynyl-2'-deoxyuridine (EdU)가 들어간 세포의 수를 증가시켰고, 세포 분열시 나타나는 인산화된 히스톤 H3(PH3)를 발현하는 세포의 수를 증가시켰다. Nifedipine은 신경세포로의 분화를 촉진하는 Dlx2 유전자의 전사를 증가시켰고, 초기 신경세포에서 보이는 Mash1의 양도 증가시켰다. Nifedipine 외 또다른 L-type 칼슘 채널의 저해제인 verapamil을 처리하자, 신경세포로의 분화가 소폭 증가하였으나, 통계적 유의미성은 매우 낮았다. T-type 칼슘 채널의 저해제 유전자인 Cav3.1, Cav3.2, Cav3.3가 발현함을 관찰하여, T-type 칼슘 채널의 저해제인 pimozide를 신경줄기세포에 처리하였으나, 신경세포로의 분화에는 변화가 없었다. 이러한 결과를 통해 nifedipine이 신경줄기세포의 초기 분화를 증진함을 알 수 있으며, L-type 칼슘 채널이 신경세포로의 분화에 관여함을 알 수 있다.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.