Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.3.370

Emerging Roles of CTD Phosphatases  

Kim, Youngjun (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
Publication Information
Journal of Life Science / v.27, no.3, 2017 , pp. 370-381 More about this Journal
Abstract
Protein dephosphorylation is important for cellular regulation, which is catalyzed by protein phosphatases. Among protein phosphatases, carboxy-terminal domain (CTD) phosphatases are recently emerging and new functional roles of them have been revealed. There are 7 CTD phosphatases in human genome, which are composed of CTD phosphatase 1 (CTDP1), CTD small phosphatase 1 (CTDSP1), CTD small phosphatase 2 (CTDSP2), CTD small phosphatase-like (CTDSPL), CTD small phosphatase-like 2 (CTDSPL2), CTD nuclear envelope phosphatase (CTDNEP1), and ubiquitin-like domain containing CTD phosphatase 1 (UBLCP1). CTDP1 dephosphorylates the second phosphor-serine of CTD of RNA polymerase II (RNAPII), while CTDSP1, STDSP2, and CTDSPL dephosphorylate the fifth phosphor-serine of CTD of RNAPII. In addition, CTDSP1 dephosphorylates new substrates such as mothers against decapentaplegic homologs (SMADs), cell division cycle-associated protein 3 (CDCA3), Twist1, tumor-suppressor protein promyelocytic leukemia (PML), and c-Myc. CTDP1 is related to RNA polymerase II complex recycling, mitosis regulation and cancer cell growth. CTDSP1, CTDSP2 and CTDSPL are related to transcription factor recruitment, tumor suppressor function and stem cell differentiation. CTDNEP1 dephosphorylates LIPIN1 and is related to neural tube formation and nuclear envelope formation. CTDSPL2 is related to hematopoietic stem cell differentiation. UBLCP1 dephosphorylates 26S proteasome and is related to nuclear proteasome regulation. In conclusion, noble roles of CTD phosphatases are emerging through recent researches and this review is intended to summarize emerging roles of CTD phosphatases.
Keywords
CTD phosphatase; dephosphorylation; phosphorylation; protein phosphatase; stem cell differentiation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sapkota, G., Knockaert, M., Alarcon, C., Montalvo, E., Brivanlou, A. H. and Massague, J. 2006. Dephosphorylation of the linker regions of Smad1 and Smad2/3 by small C-terminal domain phosphatases has distinct outcomes for bone morphogenetic protein and transforming growth factor-beta pathways. J. Biol. Chem. 281, 40412-40419.   DOI
2 Satow, R., Chan, T. C. and Asashima, M. 2002. Molecular cloning and characterization of dullard: a novel gene required for neural development. Biochem. Biophys. Res. Commun. 295, 85-91.   DOI
3 Senchenko, V. N., Anedchenko, E. A., Kondratieva, T. T., Krasnov, G. S., Dmitriev, A. A. and Zabarovska, V. I., et al. 2010. Simultaneous down-regulation of tumor suppressor genes RBSP3/CTDSPL, NPRL2/G21 and RASSF1A in primary non-small cell lung cancer. BMC Cancer 10, 75.   DOI
4 Shi, Y. 2009. Serine/threonine phosphatases: mechanism through structure. Cell 139, 468-484.   DOI
5 Sim, M. F., Dennis, R. J., Aubry, E. M., Ramanathan, N., Sembongi, H. and Saudek, V., et al. 2012. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1. Mol. Metab. 2, 38-46.
6 Sim, M. F., Talukder, M. M., Dennis, R. J., O'Rahilly, S., Edwardson, J. M. and Rochford, J. J. 2013. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms. Diabetologia 56, 2498-2506.   DOI
7 Hayata, T., Ezura, Y., Asashima, M., Nishinakamura, R. and Noda, M. 2015. Dullard/Ctdnep1 regulates endochondral ossification via suppression of TGF-beta signaling. J. Bone Miner. Res. 30, 947.   DOI
8 Irie, K., Takase, M., Araki, H. and Oshima, Y. 1993. A gene, SMP2, involved in plasmid maintenance and respiration in Saccharomyces cerevisiae encodes a highly charged protein. Mol. Gen. Genet. 236, 283-288.
9 Kashuba, V. I., Li, J., Wang, F., Senchenko, V. N., Protopopov, A. and Malyukova, A., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. USA 101, 4906-4911.   DOI
10 Kashuba, V. I., Pavlova, T. V., Grigorieva, E. V., Kutsenko, A., Yenamandra, S. P. and Li, J., et al. 2009. High mutability of the tumor suppressor genes RASSF1 and RBSP3 (CTDSPL) in cancer. PLoS One 4, e5231.   DOI
11 Barbosa, A. D., Sembongi, H., Su, W. M., Abreu, S., Reggiori, F., Carman, G. M. and Siniossoglou, S. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell 26, 3641-3657.   DOI
12 Sim, M. F., Talukder, M. U., Dennis, R. J., Edwardson, J. M. and Rochford, J. J. 2014. Analyzing the functions and structure of the human lipodystrophy protein seipin. Methods Enzymol. 537, 161-175.
13 Anedchenko, E. A., Dmitriev, A. A., Krasnov, G. S., Kondrat'eva, T. T., Kopantsev, E. P. and Vinogradova, T. V., et al. 2008. Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer. Mol. Biol. (Mosk.) 42, 965-976.
14 Anedchenko, E. A., Kiseleva, N. P., Dmitriev, A. A., Kiselev, F. L., Zabarovskii, E. R. and Senchenko, V. N. 2007. Tumor suppressor gene RBSP3 in cervical carcinoma: copy number and transcriptional level. Mol. Biol. (Mosk.) 41, 86-95.   DOI
15 Bahmanyar, S. 2015. Spatial regulation of phospholipid synthesis within the nuclear envelope domain of the endoplasmic reticulum. Nucleus 6, 102-106.   DOI
16 Bahmanyar, S., Biggs, R., Schuh, A. L., Desai, A., Muller-Reichert, T. and Audhya, A., et al. 2014. Spatial control of phospholipid flux restricts endoplasmic reticulum sheet formation to allow nuclear envelope breakdown. Genes Dev. 28, 121-126.   DOI
17 Buratowski, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541-546.   DOI
18 Campbell, J. L., Lorenz, A., Witkin, K. L., Hays, T., Loidl, J. and Cohen-Fix, O. 2006. Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion. Mol. Biol. Cell 17, 1768-1778.   DOI
19 Dai, M., Al-Odaini, A. A., Arakelian, A., Rabbani, S. A., Ali, S. and Lebrun, J. J. 2012. A novel function for p21Cip1 and acetyltransferase p/CAF as critical transcriptional regulators of TGFbeta-mediated breast cancer cell migration and invasion. Breast Cancer Res. 14, R127.
20 Khan, M. A., Tania, M., Wei, C., Mei, Z., Fu, S. and Cheng, J., et al. 2015. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget 6, 19580-19591.
21 Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H. and Pollock, D. D., et al. 2010. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279-1286.   DOI
22 Kim, Y., Gentry, M. S., Harris, T. E., Wiley, S. E., Lawrence, J. C. Jr. and Dixon, J. E. 2007. A conserved phosphatase cascade that regulates nuclear membrane biogenesis. Proc. Natl. Acad. Sci. USA 104, 6596-6601.   DOI
23 Kim, Y. J. and Bahk, Y. Y. 2014. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners. Biochem. Biophys. Res. Commun. 448, 189-194.   DOI
24 Suh, M. H., Ye, P., Zhang, M., Hausmann, S., Shuman, S., Gnatt, A. L. and Fu, J. 2005. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Proc. Natl. Acad. Sci. USA 102, 17314-17319.   DOI
25 Sinha, S., Singh, R. K., Alam, N., Roy, A., Roychoudhury, S. and Panda, C. K. 2008. Frequent alterations of hMLH1 and RBSP3/HYA22 at chromosomal 3p22.3 region in early and late-onset breast carcinoma: clinical and prognostic significance. Cancer Sci. 99, 1984-1991.
26 Son, S. and Osmani, S. A. 2009. Analysis of all protein phosphatase genes in Aspergillus nidulans identifies a new mitotic regulator, fcp1. Eukaryot. Cell 8, 573-585.   DOI
27 Su, Y. A., Lee, M. M., Hutter, C. M. and Meltzer, P. S. 1997. Characterization of a highly conserved gene (OS4) amplified with CDK4 in human sarcomas. Oncogene 15, 1289-1294.   DOI
28 Sun, G., Hu, Z., Min, Z., Yan, X., Guan, Z. and Su, H., et al. 2015. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor beta (TGFbeta)-mediated Germ Layer Induction in Xenopus Embryos. J. Biol. Chem. 290, 17239-17249.   DOI
29 Szymanski, K. M., Binns, D., Bartz, R., Grishin, N. V., Li, W. P. and Agarwal, A. K., et al. 2007. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc. Natl. Acad. Sci. USA 104, 20890-20895.   DOI
30 Tanaka, S. S., Nakane, A., Yamaguchi, Y. L., Terabayashi, T., Abe, T. and Nakao, K., et al. 2013. Dullard/Ctdnep1 modulates WNT signalling activity for the formation of primordial germ cells in the mouse embryo. PLoS One 8, e57428.   DOI
31 Ma, Y. N., Zhang, X., Yu, H. C. and Zhang, J. W. 2010. CTD small phosphatase like 2 (CTDSPL2) can increase epsilon- and gamma-globin gene expression in K562 cells and CD34+ cells derived from umbilical cord blood. BMC Cell Biol. 11, 75.   DOI
32 Kloet, D. E., Polderman, P. E., Eijkelenboom, A., Smits, L. M., van Triest, M. H. and van den Berg, M. C., et al. 2015. FOXO target gene CTDSP2 regulates cell cycle progression through Ras and p21(Cip1/Waf1). Biochem. J. 469, 289-298.   DOI
33 Lin, Y. C., Lu, L. T., Chen, H. Y., Duan, X., Lin, X. and Feng, X. H., et al. 2014. SCP phosphatases suppress renal cell carcinoma by stabilizing PML and inhibiting mTOR/HIF signaling. Cancer Res. 74, 6935-6946.   DOI
34 Lindegaard, B., Larsen, L. F., Hansen, A. B., Gerstoft, J., Pedersen, B. K. and Reue, K. 2007. Adipose tissue lipin expression levels distinguish HIV patients with and without lipodystrophy. Int. J. Obes. (Lond.) 31, 449-456.   DOI
35 Fawcett, K. A., Grimsey, N., Loos, R. J., Wheeler, E., Daly, A. and Soos, M., et al. 2008. Evaluating the role of LPIN1 variation in insulin resistance, body weight, and human lipodystrophy in U.K. Populations. Diabetes 57, 2527-2533.   DOI
36 Denu, J. M., Stuckey, J. A., Saper, M. A. and Dixon, J. E. 1996. Form and function in protein dephosphorylation. Cell 87, 361-364.   DOI
37 Dixon, D. P., Fordham-Skelton, A. P. and Edwards, R. 2005. Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44, 7696-7703.   DOI
38 Egloff, S. and Murphy, S. 2008. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280-288.   DOI
39 Fu, H., Yang, D., Wang, C., Xu, J., Wang, W., Yan, R. and Cai, Q. 2015. Carboxy-terminal domain phosphatase 1 silencing results in the inhibition of tumor formation ability in gastric cancer cells. Oncol. Lett. 10, 2947-2952.   DOI
40 Guo, X., Engel, J. L., Xiao, J., Tagliabracci, V. S., Wang, X., Huang, L. and Dixon, J. E. 2011. UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity. Proc. Natl. Acad. Sci. USA 108, 18649-18654.   DOI
41 Han, S., Bahmanyar, S., Zhang, P., Grishin, N., Oegema, K. and Crooke, R., et al. 2011. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J. Biol. Chem. 287, 3123-3137.
42 Meinhart, A., Kamenski, T., Hoeppner, S., Baumli, S. and Cramer, P. 2005. A structural perspective of CTD function. Genes Dev. 19, 1401-1415.   DOI
43 Masuda, M., Oshima, A., Noguchi, T. and Kagiwada, S. 2015. Induction of intranuclear membranes by overproduction of Opi1p and Scs2p, regulators for yeast phospholipid biosynthesis, suggests a mechanism for Opi1p nuclear translocation. J. Biochem. 159, 351-361.
44 Mayfield, J. E., Burkholder, N. T. and Zhang, Y. J. 2016. Dephosphorylating eukaryotic RNA polymerase II. Biochim. Biophys. Acta 1864, 372-387.   DOI
45 Mayfield, J. E., Fan, S., Wei, S., Zhang, M., Li, B. and Ellington, A. D., et al. 2015. Chemical tools to decipher regulation of phosphatases by proline isomerization on eukaryotic RNA polymerase II. ACS Chem. Biol. 10, 2405-2414.   DOI
46 Visconti, R., Della Monica, R., Palazzo, L., D'Alessio, F., Raia, M. and Improta, S., et al. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death Differ. 22, 1551-1560.   DOI
47 Thompson, J., Lepikhova, T., Teixido-Travesa, N., Whitehead, M. A., Palvimo, J. J. and Janne, O. A. 2006. Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J. 25, 2757-2767.   DOI
48 Urrutia, H., Aleman, A. and Eivers, E. 2016. Drosophila Dullard functions as a Mad phosphatase to terminate BMP signaling. Sci. Rep. 6, 32269.   DOI
49 Varon, R., Gooding, R., Steglich, C., Marns, L., Tang, H. and Angelicheva, D., et al. 2003. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nat. Genet. 35, 185-189.   DOI
50 Visconti, R., Palazzo, L., Della Monica, R. and Grieco, D. 2012. Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat. Commun. 3, 894.   DOI
51 Wang, W., Liao, P., Shen ,M., Chen, T., Chen, Y. and Li, Y., et al. 2015. SCP1 regulates c-Myc stability and functions through dephosphorylating c-Myc Ser62. Oncogene 35, 491-500.
52 Wani, S., Sugita, A., Ohkuma, Y. and Hirose, Y. 2016. Human SCP4 is a chromatin-associated CTD phosphatase and exhibits the dynamic translocation during erythroid differentiation. J. Biochem. 160, 111-120.   DOI
53 Yeo, M. and Lin, P. S. 2007. Functional characterization of small CTD phosphatases. Methods Mol. Biol. 365, 335-346.
54 Han, S., Binns, D. D., Chang, Y. F. and Goodman, J. M. 2015. Dissecting seipin function: the localized accumulation of phosphatidic acid at ER/LD junctions in the absence of seipin is suppressed by Sei1p(DeltaNterm) only in combination with Ldb16p. BMC Cell Biol. 16, 29.   DOI
55 Hausmann, S. and Shuman, S. 2002. Characterization of the CTD phosphatase Fcp1 from fission yeast. Preferential dephosphorylation of serine 2 versus serine 5. J. Biol. Chem. 277, 21213-21220.   DOI
56 Wee, K., Yang, W., Sugii, S. and Han, W. 2014. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci. Rep. 34, e00141
57 Witkin, K. L., Friederichs, J. M., Cohen-Fix, O. and Jaspersen, S. L. 2010 Changes in the nuclear envelope environment affect spindle pole body duplication in Saccharomyces cerevisiae. Genetics 186, 867-883.   DOI
58 Wolinski, H., Hofbauer, H. F., Hellauer, K., Cristobal-Sarramian, A., Kolb, D. and Radulovic, M., et al. 2015. Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast. Biochim. Biophys. Acta 1851, 1450-1464.   DOI
59 Wrighton, K. H., Willis, D., Long, J., Liu, F., Lin, X. and Feng, X. H. 2006. Small C-terminal domain phosphatases dephosphorylate the regulatory linker regions of Smad2 and Smad3 to enhance transforming growth factor-beta signaling. J. Biol. Chem. 281, 38365-38375.   DOI
60 Yeo, M., Lee, S. K., Lee, B., Ruiz, E. C., Pfaff, S. L. and Gill, G. N. 2005. Small CTD phosphatases function in silencing neuronal gene expression. Science 307, 596-600.   DOI
61 Yeo, M., Lin, P. S., Dahmus, M. E. and Gill, G. N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078-26085.   DOI
62 Nesti, E., Corson, G. M., McCleskey, M., Oyer, J. A. and Mandel, G. 2014. C-terminal domain small phosphatase 1 and MAP kinase reciprocally control REST stability and neuronal differentiation. Proc. Natl. Acad. Sci. USA 111, E3929-3936.   DOI
63 Yun, J. H., Ko, S., Lee, C. K., Cheong, H. K., Cheong, C., Yoon, J. B. and Lee, W. 2013. Solution structure and Rpn1 interaction of the UBL domain of human RNA polymerase II C-terminal domain phosphatase. PLoS One 8, e62981.   DOI
64 Zhang, D. W., Mosley, A. L., Ramisetty, S. R., Rodriguez-Molina, J. B., Washburn, M. P. and Ansari, A. Z. 2012. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 287, 8541-8551.   DOI
65 Zhang, M., Cho, E. J., Burstein, G., Siegel, D. and Zhang, Y. 2011. Selective inactivation of a human neuronal silencing phosphatase by a small molecule inhibitor. ACS Chem. Biol. 6, 511-519.   DOI
66 Mul, J. D., Nadra, K., Jagalur, N. B., Nijman, I. J., Toonen, P. W. and Medard, J. J., et al. 2011. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J. Biol. Chem. 286, 26781-26793.   DOI
67 Mustelin, T. 2007. A brief introduction to the protein phosphatase families. Methods Mol. Biol. 365, 9-22.
68 Notredame, C., Higgins, D. G. and Heringa, J. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205-217.   DOI
69 O'Hara, L., Han, G. S., Peak-Chew, S., Grimsey, N., Carman, G. M. and Siniossoglou, S. 2006. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J. Biol. Chem. 281, 34537-34548.   DOI
70 Payne, V. A., Grimsey, N., Tuthill, A., Virtue, S., Gray, S. L. and Dalla Nora, E., et al. 2008. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57, 2055-2060.   DOI
71 R, H. R., Kim, H., Noh, K. and Kim, Y. J. 2014. The diverse roles of RNA polymerase II C-terminal domain phosphatase SCP1. BMB Rep. 47, 192-196.   DOI
72 Zhang, M., Liu J., Kim, Y., Dixon, J. E., Pfaff, S. L. and Gill, G. N., et al. 2010. Structural and functional analysis of the phosphoryl transfer reaction mediated by the human small C-terminal domain phosphatase, Scp1. Protein Sci. 19, 974-986.
73 Zhang, Y., Kim, Y., Genoud, N., Gao, J., Kelly, J. W. and Pfaff, S. L., et al. 2006. Determinants for dephosphorylation of the RNA polymerase II C-terminal domain by Scp1. Mol. Cell 24, 759-770.   DOI
74 Zhao, Y., Xiao, M., Sun, B., Zhang, Z., Shen, T. and Duan, X., et al. 2014. C-terminal domain (CTD) small phosphatase-like 2 modulates the canonical bone morphogenetic protein (BMP) signaling and mesenchymal differentiation via Smad dephosphorylation. J. Biol. Chem. 289, 26441-26450.   DOI
75 Peterfy, M., Phan, J., Xu, P. and Reue, K. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat. Genet. 27, 121-124.   DOI
76 Phan, J. and Reue, K. 2005. Lipin, a lipodystrophy and obesity gene. Cell Metab. 1, 73-83.   DOI
77 Rosonina, E. and Blencowe, B. J. 2004. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage. RNA 10, 581-589.   DOI
78 Zohn, I. E. and Brivanlou, A. H. 2001. Expression cloning of Xenopus Os4, an evolutionarily conserved gene, which induces mesoderm and dorsal axis. Dev. Biol. 239, 118-131.   DOI
79 Zheng, H., Ji, C., Gu, S., Shi, B., Wang, J., Xie, Y. and Mao, Y. 2005. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Biochem. Biophys. Res. Commun. 331, 1401-1407.   DOI
80 Zhong, R., Ge, X., Chu, T., Teng, J., Yan, B. and Pei, J., et al. 2015. Lentivirus-mediated knockdown of CTDP1 inhibits lung cancer cell growth in vitro. J. Cancer Res. Clin. Oncol. 142, 723-732.
81 Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S. and Siniossoglou, S. 2005. The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth. EMBO J. 24, 1931-1941.   DOI
82 Sakaguchi, M., Sharmin, S., Taguchi, A., Ohmori, T., Fujimura, S. and Abe, T., et al. 2013. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat. Commun. 4, 1398.   DOI