Browse > Article
http://dx.doi.org/10.5483/BMBRep.2018.51.11.226

Roles of mitochondria in neuronal development  

Son, Geurim (Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST))
Han, Jinju (Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
BMB Reports / v.51, no.11, 2018 , pp. 549-556 More about this Journal
Abstract
Mitochondria are ubiquitous and multi-functional organelles involved in diverse metabolic processes, namely energy production and biomolecule synthesis. The intracellular mitochondrial morphology and distribution change dynamically, which reflect the metabolic state of a given cell type. A dramatic change of the mitochondrial dynamics has been observed in early development that led to further investigations on the relationship between mitochondria and the process of development. A significant developmental process to focus on, in this review, is a differentiation of neural progenitor cells into neurons. Information on how mitochondria-regulated cellular energetics is linked to neuronal development will be discussed, followed by functions of mitochondria and associated diseases in neuronal development. Lastly, the potential use of mitochondrial features in analyzing various neurodevelopmental diseases will be addressed.
Keywords
Energy metabolism; Mitochondria; Neural stem cell; Neurodevelopmental diseases; Neuronal development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Knobloch M, Pilz GA, Ghesquiere B et al (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20, 2144-2155   DOI
2 Kilbaugh TJ, Lvova M, Karlsson M et al (2015) Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. Ai J, ed. PLoS One 10, e0130927   DOI
3 Knobloch M, Braun SMG, Zurkirchen L et al (2014) Metabolic control of adult neural stem cell activity by Fasn- dependent lipogenesis. Nature 493, 226-230
4 Smirnova E, Griparic L, Shurland DL and van der Bliek AM (2001) Dynamin-related protein Drp1 Is required for mitochondrial division in mammalian cells. Mol Biol Cell 12, 2245-2256   DOI
5 Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE and Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160, 189-200   DOI
6 Chen H and Chan DC (2004) Mitochondrial dynamics in mammals. In: Schatten GP, ed. Vol 59. Current topics in developmental biology. Academic Press 59, 119-144
7 Khacho M, Clark A, Svoboda DS et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19, 232-247   DOI
8 Khacho M and Slack RS (2018) Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev Dyn 247, 47-53   DOI
9 Beckervordersandforth R, Ebert B, Schaffner I et al (2017) Role of mitochondrial metabolism in the control of early lineage progression and aging phenotypes in adult hippocampal neurogenesis. Neuron 93, 560-573 e6   DOI
10 Alirol E and Martinou JC (2006) Mitochondria and cancer: Is there a morphological connection? Oncogene 25, 4706-4716   DOI
11 Shin J, Berg DA, Zhu Y et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372   DOI
12 Novello F and McLean P (1968) The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J 107, 775-791   DOI
13 Lunt SY and Vander Heiden MG (2011) Aerobic Glycolysis: Meeting the Metabolic Requirements of Cell Proliferation. Annu Rev Cell Dev Biol 27, 441-464   DOI
14 Kuznetsov AV, Hermann M, Saks V, Hengster P and Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41, 1928-1939   DOI
15 Yellen G (2018) Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol 217, 2235-2246   DOI
16 Ebrahimi-Fakhari D, Saffari A, Wahlster L et al (2016) Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep 17, 1053-1070   DOI
17 Telley L, Govindan S, Prados J et al (2016) Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443-1446   DOI
18 Marin-Valencia I, Cho SK, Rakheja D et al (2012) Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors. NMR Biomed 25, 1177-1186   DOI
19 Fang D, Yan S, Yu Q, Chen D and Yan SS (2016) Mfn2 is required for mitochondrial development and synapse formation in human induced pluripotent stem cells/hiPSC derived cortical neurons. Sci Rep 6, 1-13   DOI
20 Zheng X, Boyer L, Jin M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5, 1-25
21 Agostini M, Romeo F, Inoue S et al (2016) Metabolic reprogramming during neuronal differentiation. Cell Death Differ 23, 1502-1514   DOI
22 Fortelny N, Overall CM, Pavlidis P and Freue GVC (2017) Can we predict protein from mRNA levels? Nature 547, E19-E20   DOI
23 Liu Y, Beyer A and Aebersold R (2016) On the dependency of cellular protein levels on mRNA Abundance. Cell 165, 535-550   DOI
24 Chen Y and Sheng ZH (2013) Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J Cell Biol 202, 351-364   DOI
25 MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 Is a calcium sensor for glutamate receptordependent localization of mitochondria at synapses. Neuron 61, 541-555   DOI
26 Xu X, Duan S, Yi F, Ocampo A, Liu GH and Izpisua Belmonte JC (2013) Mitochondrial regulation in pluripotent stem cells. Cell Metab 18, 325-332   DOI
27 Zhang H, Menzies KJ and Auwerx J (2018) The role of mitochondria in stem cell fate and aging. Development 145, dev143420   DOI
28 Teslaa T and Teitell MA (2015) Pluripotent stem cell energy metabolism: an update. EMBO J 34, 138-153   DOI
29 Lees JG, Gardner DK and Harvey AJ (2017) Pluripotent stem cell metabolism and mitochondria: beyond ATP. Stem Cells Int 2017, 2874283
30 Suomalainen A and Battersby BJ (2018) Mitochondrial diseases: The contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 19, 77-92   DOI
31 Ott M, Amunts A and Brown A (2016) Organization and regulation of mitochondrial protein synthesis. Annu Rev Biochem 85, 77-101   DOI
32 Roger AJ, Munoz-Gomez SA and Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27, R1177-R1192   DOI
33 Dyall SD, Brown MT and Johnson PJ (2004) Ancient Invasions: From endosymbionts to organelles. Science 304, 253-257   DOI
34 Anderson S, Bankier AT, Barrell BG et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-465   DOI
35 Calkins MJ, Manczak M, Mao P, Shirendeb U and Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease. Hum Mol Genet 20, 4515-4529   DOI
36 Nemani N, Carvalho E, Tomar D et al (2018) MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+stress. Cell Rep 23, 1005-1019   DOI
37 Kang JS, Tian JH, Pan PY et al (2008) Docking of axonal Mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132, 137-148   DOI
38 Lightowlers RN, Rozanska A and Chrzanowska- Lightowlers ZM (2014) Mitochondrial protein synthesis: Figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. FEBS Lett 588, 2496-2503   DOI
39 Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471-483 e10   DOI
40 Li Z, Okamoto KI, Hayashi Y and Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887   DOI
41 Lorenz C, Lesimple P, Bukowiecki R et al (2017) Human iPSC-derived neural progenitors are an effective drug discovery model for neurological mtDNA disorders. Cell Stem Cell 20, 659-674 e9   DOI
42 Zsurka G and Kunz WS (2015) Mitochondrial dysfunction and seizures: The neuronal energy crisis. Lancet Neurol 14, 956-966   DOI
43 Martin MA, Blazquez A, Gutierrez-Solana LG et al (2005) Leigh syndrome associated with mitochondrial complex I deficiency due to a novel mutation in the NDUFS1 gene. Arch Neurol 62, 659-661   DOI
44 DiMauro S, Tanji K and Schon EA (2012) The many clinical faces of cytochrome c oxidase deficiency. In: Kadenbach B, ed. mitochondrial oxidative phosphorylation: nuclear-encoded genes, enzyme regulation, and pathophysiology. New York, NY: Springer New York Cahpter 14, 341-357
45 Marin SE, Mesterman R, Robinson B, Rodenburg RJ, Smeitink J and Tarnopolsky MA (2013) Leigh syndrome associated with mitochondrial complex I deficiency due to novel mutations In NDUFV1 and NDUFS2. Gene 516, 162-167   DOI
46 Distelmaier F and Koopman WJH, van den Heuvel LP et al (2009) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132, 833-842
47 Saneto R and Ruhoy I (2014) The genetics of Leigh syndrome and its implications for clinical practice and risk management. Appl Clin Genet 7, 221-234
48 Larsson NG (2010) Somatic Mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem 79, 683-706   DOI
49 Rampelt H and Pfanner N (2016) Coordination of two genomes by mitochondrial translational plasticity. Cell 167, 308-310   DOI
50 Haynes CM, Yang Y, Blais SP, Neubert TA and Ron D (2010) The Matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37, 529-540   DOI
51 Fox TD (2012) Mitochondrial protein synthesis, import, and assembly. Genetics 192, 1203-1234   DOI
52 Dolezal P, Likic V, Tachezy J and Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313, 314-318
53 Lee SY, Kang MG, Shin S et al (2017) Architecture mapping of the inner mitochondrial membrane proteome by chemical tools in live cells. J Am Chem Soc 139, 3651-3662   DOI
54 Wiedemann N and Pfanner N (2017) mitochondrial machineries for protein import and assembly. Annu Rev Biochem 86, 685-714   DOI
55 Rhee HW, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331   DOI
56 Lee SY, Kang MG, Park JS, Lee G, Ting AY and Rhee HW (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15, 1837-1847   DOI
57 Han S, Udeshi ND, Deerinck TJ et al (2017) Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem Biol 24, 404-414   DOI
58 Hung V, Zou P, Rhee HW et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332-341   DOI
59 Gibson JH, Slobedman B, KN H et al (2010) Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 11, 53   DOI
60 Kriaucionis S, Paterson A, Curtis J, Guy J, MacLeod N and Bird A (2006) Gene Expression Analysis Exposes mitochondrial abnormalities in a mouse model of rett syndrome. Mol Cell Biol 26, 5033-5042   DOI
61 Pecorelli A, Leoni G, Cervellati F et al (2013) Genes related to mitochondrial functions, protein degradation, and chromatin folding are differentially expressed in lymphomonocytes of rett syndrome patients. Mediators Inflamm 2013, 137629
62 Su H, Fan W, Coskun PE et al (2011) Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome. Neurosci Lett 487, 129-133   DOI
63 Su D, Cha YM and West AE (2012) Mutation of Mecp2 alters transcriptional regulation of select immediate-early genes. Epigenetics 7, 146-154   DOI
64 Chahrour M, Jung SY, Shaw C et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224-1229   DOI
65 Shulyakova N, Andreazza AC, Mills LR and Eubanks JH (2017) Mitochondrial dysfunction in the pathogenesis of rett syndrome: Implications for mitochondria-targeted therapies. Front Cell Neurosci 11, 58
66 Khemakhem AM, Frye RE, El-Ansary A, Al-Ayadhi L and Bacha A Ben (2017) Novel biomarkers of metabolic dysfunction is autism spectrum disorder: potential for biological diagnostic markers. Metab Brain Dis 32, 1983-1997   DOI
67 James SJ, Melnyk S, Fuchs G et al (2009) Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr 89, 425-430   DOI
68 Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22, 79-99   DOI
69 Hung V, Lam SS, Udeshi ND et al (2017) Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. Elife 6, 1-38
70 Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884   DOI
71 Chen H and Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14 Spec No. 2, R283-289
72 Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958-966   DOI
73 Chang DTW, Honick AS and Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26, 7035-7045   DOI
74 Fransson A, Ruusala A and Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344, 500-510   DOI
75 Calvo SE, Clauser KR and Mootha VK (2016) MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res 44, D1251-1257   DOI
76 Smith AC and Robinson AJ (2016) MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res 44, D1258-1261   DOI
77 Prokisch H and Ahting U (2007) MitoP2, an integrated database for mitochondrial proteins. Methods Mol Biol 372, 573-586
78 Cotter D, Guda P, Fahy E and Subramaniam S (2004) MitoProteome: mitochondrial protein sequence database and annotation system. Nucleic Acids Res 32, D463-467   DOI
79 Perry SW, Norman JP, Litzburg A and Gelbard HA (2004) Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res 78, 485-492   DOI
80 James SJ, Rose S, Melnyk S et al (2009) Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23, 2374-2383   DOI
81 Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: Evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9, 684-697   DOI
82 Chugani DC, Sundram BS, Behen M, Lee ML and Moore GJ (1999) Evidence of altered energy metabolism in autistic children. Prog Neuro-Psychopharmacology Biol Psychiatry 23, 635-641   DOI
83 Brennand K, Savas JN, Kim Y et al (2015) Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry 20, 361-368   DOI
84 Maurer I, Zierz S and Moller H (2001) Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 48, 125-136   DOI
85 Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M and Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68, 694-713   DOI
86 Mertens J, Wang QW, Kim Y et al (2015) Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95-99   DOI
87 Malik AN and Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481-492   DOI
88 Li G, Fang L, Fernandez G and Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78, 658-672   DOI
89 Stiles J and Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20, 327-348   DOI
90 Fuentealba LC, Rompani SB, Parraguez JI et al (2015) Embryonic origin of postnatal neural stem cells. Cell 161, 1644-1655   DOI
91 Sorrells SF, Paredes MF, Cebrian-Silla A et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377-381   DOI
92 Boldrini M, Fulmore CA, Tartt AN et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589-599   DOI
93 Kempermann G, Gage FH, Aigner L et al (2018) Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell 23, 25-30   DOI
94 Beckervordersandforth R, Zhang C and Lie DC (2015) Transcription-factor-dependent control of adult hippocampal neurogenesis. Cold Spring Harb Perspect Biol 7, a018879   DOI
95 Martynoga B, Drechsel D, Guillemot F et al (2012) Molecular control of neurogenesis : A view from the mammalian cerebral cortex molecular control of neurogenesis : A view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol 4, a008359
96 Hirabayashi Y (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131, 2791-2801   DOI
97 Lie DC, Colamarino SA, Song HJ et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437, 1370-1375   DOI
98 Budnik LT, Kloth S, Baur X, Preisser AM and Schwarzenbach H (2013) Circulating mitochondrial DNA as biomarker linking environmental chemical exposure to early preclinical lesions elevation of mtDNA in human serum after exposure to carcinogenic halo-alkane-based pesticides. Hoque MO, ed. PLoS One 8, e64413   DOI