• 제목/요약/키워드: Neural network optimization

검색결과 800건 처리시간 0.028초

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • 제19권1호
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습 (Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm)

  • 장현우;정성훈
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권5호
    • /
    • pp.969-976
    • /
    • 2017
  • 본 논문에서는 최적화 알고리즘으로 개발된 WFSO(Water Flowing and Shaking Optimization) 알고리즘을 사용한 인공신경망 과합성공 신경망의 학습 방법을 제안한다. 최적화 알고리즘은 다수의 후보 해를 기반으로 탐색해 나가기 때문에 일반적으로 속도가 느린 단점이 있으나 지역 최소값에 거의 빠지지 않고 병렬화가 용이하며 미분 불가능한 활성화함수를 갖는 인공신경망 학습도 가능하고 구조와 가중치를 동시에 최적화 할 수 있는 장점이 있다. 본 논문에서는 WFSO 알고리즘을 인공신경망 학습에 적용하는 방법을 설명하고 다층 인공신경망과 합성곱 신경망에서 오류역전파 알고리즘과 성능을 비교한다.

퍼지 및 신경망을 이용한 Blending Process의 최적화 (Blending Precess Optimization using Fuzzy Set Theory an Neural Networks)

  • 황인창;김정남;주관정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화 (Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용 (The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data)

  • 장욱;권오국;주영훈;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

임분의 적정 시업체계분석을 위한 Neural Network 기법의 적용성 검토 (Performance Analysis of Neural Network on Determining The Optimal Stand Management Regimes)

  • 정주상
    • 한국산림과학회지
    • /
    • 제84권1호
    • /
    • pp.63-70
    • /
    • 1995
  • 이 논문에서는 neural network기법에 의해 소규모 임분의 시업계획을 분석하는 방법과 적용성을 평가하였다. 이를 위해서 적정한 임분시업체계를 계산하기 위한 neural network 모델을 개발하고, neural network의 구조체계와 network을 교육시키기 위해 요구되는 자료량의 측면에서 적용성을 검토하였다. 연구목적상 모델의 교육 및 비교분석에 요구되는 적정 시업체계에 대한 자료는 기존의 비선형 시업체계분석모델을 이용하였다. 이 시업체계 분석모델은 동령급 구조의 긴잎 소나무(Pinus palustris) 단순림의 적정시업체계를 분석하는 모델로서 전림수확생장함수에 의해 임분의 생장이 예측되는 모델이다. neural network 모델의 적용성 검토에 요구되는 분석자료들은 이 비선형 시업체계분석모델에 의해 제시된 긴잎소나무 임분의 적정 시업체제분석 결과들을 이용하였다.

  • PDF

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

다중 컴퓨터 시스템을 이용한 최적화 신경회로망의 최적 병렬구현 (Optimal Parallel Implementation of an Optimization Neural Network by Using a Multicomputer System)

  • 김진호;최흥문
    • 전자공학회논문지B
    • /
    • 제28B권12호
    • /
    • pp.75-82
    • /
    • 1991
  • We proposed an optimal parallel implementation of an optimization neural network with linear increase of speedup by using multicomputer system and presented performance analysis model of the system. We extracted the temporal-and the spatial-parallelism from the optimization neural network and constructed a parallel pipeline processing model using the parallelism in order to achieve the maximum speedup and efficiency on the CSP architecture. The results of the experiments for the TSP using the Transputer system, show that the proposed system gives linear increase of speedup proportional to the size of the optimization neural network for more than 140 neurons, and we can have more than 98% of effeciency upto 16-node system.

  • PDF

비선형제한조건을 갖는 최적화문제 신경회로망 (Neural Networks for Optimization Problem with Nonlinear Constraints)

  • 강민제
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Hopfield는 선형 제한조건을 갖는 선형프로그램밍을 풀 수 있는 신경회로망을 제안하였는 데, 이 논문에서는 제한조건함수가 비선형함수를 포함하는 일반적인 최적화문제를 해결할 수 있는 신경망으로 확장하였다. 또한, 최적화문제를 신경회로망에 매핑시키는 방법, 그리고 회로로 구성하는 방법들이 논의되었다.