• Title/Summary/Keyword: Neural network optimization

Search Result 795, Processing Time 0.026 seconds

Layout Optimization Method of Railway Transportation Route Based on Deep Convolution Neural Network

  • Cong, Qiao;Qifeng, Gao;Huayan, Xing
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.46-54
    • /
    • 2023
  • To improve the railway transportation capacity and maximize the benefits of railway transportation, a method for layout optimization of railway transportation route based on deep convolution neural network is proposed in this study. Considering the transportation cost of railway transportation and other factors, the layout model of railway transportation route is constructed. Based on improved ant colony algorithm, the layout model of railway transportation route was optimized, and multiple candidate railway transportation routes were output. Taking into account external information such as regional information, weather conditions and actual information of railway transportation routes, optimization of the candidate railway transportation routes obtained by the improved ant colony algorithm was performed based on deep convolution neural network, and the optimal railway transportation routes were output, and finally layout optimization of railway transportation routes was realized. The experimental results show that the proposed method can obtain the optimal railway transportation route, the shortest transportation length, and the least transportation time, maximizing the interests of railway transportation enterprises.

Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm (WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습)

  • Jang, Hyun-Woo;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.969-976
    • /
    • 2017
  • This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.

Blending Precess Optimization using Fuzzy Set Theory an Neural Networks (퍼지 및 신경망을 이용한 Blending Process의 최적화)

  • 황인창;김정남;주관정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.488-492
    • /
    • 1993
  • This paper proposes a new approach to the optimization method of a blending process with neural network. The method is based on the error backpropagation learning algorithm for neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a system solver. A fuzzy membership function is used in parallel with the neural network to minimize the difference between measurement value and input value of neural network. As a result, we can guarantee the reliability and stability of blending process by the help of neural network and fuzzy membership function.

  • PDF

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data (유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용)

  • Jang, Wook;Kwon, Oh-Gook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Optimal Learning of Neo-Fuzzy Structure Using Bacteria Foraging Optimization

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1716-1722
    • /
    • 2005
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes bacteria foraging algorithm based optimal learning fuzzy-neural network (BA-FNN). The proposed learning scheme is the fuzzy-neural network structure which can handle linguistic knowledge as tuning membership function of fuzzy logic by bacteria foraging algorithm. The learning algorithm of the BA-FNN is composed of two phases. The first phase is to find the initial membership functions of the fuzzy neural network model. In the second phase, bacteria foraging algorithm is used for tuning of membership functions of the proposed model.

  • PDF

Performance Analysis of Neural Network on Determining The Optimal Stand Management Regimes (임분의 적정 시업체계분석을 위한 Neural Network 기법의 적용성 검토)

  • Chung, Joo Sang;Roise, Joseph P.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • This paper discusses applications of neural network to stand stocking control problems. The scope of this research was to develop a neural network model for finding optimal stand management regimes and examining the performance of the model for field application. Performance was analyzed in consideration of the number of training examples and structural aspects of neural network. Research on network performance was based on extensive optimization studies for pure longleaf pine(Pinus palustris) stands. For experimental purposes. an existing nonlinear even-aged stand optimization model with a whole-stand growth and yield simulator was used to generate data samples required for the performance analysis.

  • PDF

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

Optimal Parallel Implementation of an Optimization Neural Network by Using a Multicomputer System (다중 컴퓨터 시스템을 이용한 최적화 신경회로망의 최적 병렬구현)

  • 김진호;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.12
    • /
    • pp.75-82
    • /
    • 1991
  • We proposed an optimal parallel implementation of an optimization neural network with linear increase of speedup by using multicomputer system and presented performance analysis model of the system. We extracted the temporal-and the spatial-parallelism from the optimization neural network and constructed a parallel pipeline processing model using the parallelism in order to achieve the maximum speedup and efficiency on the CSP architecture. The results of the experiments for the TSP using the Transputer system, show that the proposed system gives linear increase of speedup proportional to the size of the optimization neural network for more than 140 neurons, and we can have more than 98% of effeciency upto 16-node system.

  • PDF

Neural Networks for Optimization Problem with Nonlinear Constraints (비선형제한조건을 갖는 최적화문제 신경회로망)

  • Kang, Min-Je
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Hopfield introduced the neural network for linear program with linear constraints. In this paper, Hopfield neural network has been generalized to solve the optimization problems including nonlinear constraints. Also, it has been discussed the methods hew to reconcile optimization problem with neural networks and how to implement the circuits.