• Title/Summary/Keyword: Neural cell differentiation

Search Result 127, Processing Time 0.027 seconds

Mind Bomb-Binding Partner RanBP9 Plays a Contributory Role in Retinal Development

  • Yoo, Kyeong-Won;Thiruvarangan, Maivannan;Jeong, Yun-Mi;Lee, Mi-Sun;Maddirevula, Sateesh;Rhee, Myungchull;Bae, Young-Ki;Kim, Hyung-Goo;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.271-279
    • /
    • 2017
  • Ran-binding protein family member, RanBP9 has been reported in various basic cellular mechanisms and neuropathological conditions including schizophrenia. Previous studies have reported that RanBP9 is highly expressed in the mammalian brain and retina; however, the role of RanBP9 in retinal development is largely unknown. Here, we present the novel and regulatory roles of RanBP9 in retinal development of a vertebrate animal model, zebrafish. Zebrafish embryos exhibited abundant expression of ranbp9 in developing brain tissues as well as in the developing retina. Yeast two-hybrid screening demonstrated the interaction of RanBP9 with Mind bomb, a component of Notch signaling involved in both neurogenesis and neural disease autism. The interaction is further substantiated by co-localization studies in cultured cells. Knockdown of ranbp9 resulted in retinal dysplasia with defective proliferation of retinal cells, downregulation of neuronal differentiation marker huC, elevation of neural proliferation marker her4, and alteration of cell cycle marker p57kip2. Expression of the $M{\ddot{u}}ller$ glial cell marker glutamine synthase was also affected in knockdown morphants. Our results suggest that Mind bomb-binding partner RanBP9 plays a role during retinal cell development of zebrafish embryogenesis.

ROLE OF DCC(DELETED IN COLORECTAL CANCER) GENE IN ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 DCC 유전자의 역할)

  • Ko, Seong-Kyu;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.518-524
    • /
    • 2008
  • Chromosome 18q alteration plays a key role in colorectal tumorigenesis, and loss of heterozygosity at 18q is associated with a poor prognosis in colon cancer. DCC(Deleted in Colorectal Cancer) is a putative tumor- suppressor gene at 18q21 that encodes a transmembrane protein with structural similarity to neural cell adhesion molecule that is involved in both epithelial and neuronal cell differentiation. DCC is implicated in regulation of cell growth, survival and proliferation. Thus, tumor progression in squamous cell carcinoma, stomach cancer, colorectal cancer correlates with downregulation of DCC expression. The mechanism for DCC suppression is associated with hypermethylation of the DCC gene promoter region. Hence, the goal of this study is to identify the promoter methylation responsible for the down-regulation of DCC expression in oral squamous cell carcinoma. 12 of tissue specimens for the study are excised and gathered from 12 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find expression of DCC in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1. In the DCC gene RT-PCR analysis, 5(41.6%) of 12 specimens of oral squamous cell carcinoma did not expressed DCC gene. 2. In the promoter methylation specific PCR analysis, 5(41.6%) of 12 specimens showed promoter methylation of DCC gene. 3. In the immunohistochemical staining of poor differentiated and invasive oral squamous cell carcinoma, loss of DCC expression was observed. These findings suggest that methylation of the DCC gene may play a role in loss of gene expression in invasive oral squamous cell carcinoma.

Region- and Neuronal Phenotype-specific Expression of NELL2 in the Adult Rat Brain

  • Jeong, Jin Kwon;Kim, Han Rae;Hwang, Seong Mun;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.186-192
    • /
    • 2008
  • NELL2, a neural tissue-enriched protein, is produced in the embryo, and postembryonically in the mammalian brain, with a broad distribution. Although its synthesis is required for neuronal differentiation in chicks, not much is known about its function in the adult mammalian brain. We investigated the distribution of NELL2 in various regions of the adult rat brain to study its potential functions in brain physiology. Consistent with previous reports, NELL2-immunoreactivity (ir) was found in the cytoplasm of neurons, but not in glial fibrillary acidic protein (GFAP)-positive glial cells. The highest levels of NELL2 were detected in the hippocampus and the cerebellum. Interestingly, in the cerebellar cortex NELL2 was observed only in the GABAergic Purkinje cells not in the excitatory granular cells. In contrast, it was found mainly in the hippocampal dentate gyrus and pyramidal cell layer that contains mainly glutamatergic neurons. In the dentate gyrus, NELL2 was not detected in the GFAP-positive neural precursor cells, but was generally present in mature neurons of the subgranular zone, suggesting a role in this region restricted to mature neurons.

Parthenogenetic Mouse Embryonic Stem Cells have Similar Characteristics to In Vitro Fertilization mES Cells (체외수정 유래 생쥐 배아줄기세포와 유사한 특성을 보유한 단위발생 유래 생쥐 배아줄기세포)

  • Park, Se-Pill;Kim, Eun-Young;Lee, Keum-Si;Lee, Young-Jae;Shin, Hyun-Ah;Min, Hyun-Jung;Lee, Hoon-Taek;Chung, Kil-Saeng;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • Objective: This study was to compare the characteristics between parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Materials and Methods: Mouse oocytes were recovered from superovulated 4 wks hybrid F1 (C57BL/6xCBA/N) female mice. For parthenogenetic activation, oocytes were treated with 7% ethanol for 5 min and $5{\mu}g$/ml cytochalasin-B for 4 h. For IVF, oocytes were inseminated with epididymal sperm of hybrid F1 male mice ($1{times}10^6/ml$). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count of blastocysts in those two groups was taken by differential labelling using propidium iodide (red) and bisbenzimide (blue). To establish ES cells, b1astocysts in IVF and parthenogenetic groups were treated by immunosurgery and recovered inner cell mass (ICM) cells were cultured in LIF added ES culture medium. To identify ES cells, the surface markers alkaline phosphatase, SSEA-1, 3,4 and Oct4 staining were examined in rep1ated ICM colonies. Chromosome numbers in P-mES and mES were checked. Also, in vitro differentiation potential of P-mES and mES was examined. Results: Although the cleavage rate (${\geq}$2-cell) was not different between IVF (76.3%) and parthenogenetic group (67.0%), in vitro development rate was significantly low in parthenogenetic group (24.0%) than IVF group (68.4%) (p<0.05). Cell number count of ICM and total cell in parthenogenetic b1astocysts ($9.6{\pm}3.1,\;35.1{\pm}5.2$) were signficantly lower than those of IVF blastocysts ($19.5{\pm}4.7,\;63.2{\pm}13.0$) (p<0.05). Through the serial treatment procedure such as immunosurgery, plating of ICM and colony formation, two ICM colonies in IVF group (mES, 10.0%) and three ICM colonies (P-mES, 42.9%) in parthenogenetic group were able to culture for extended duration (25 and 20 passages, respectively). Using surface markers, alkaline phosphatase, SSEA-l and Oct4 in P-mES and mES colony were positively stained. The number of chromosome was normal in ES colony from two groups. Also, in vitro neural and cardiac cell differentiation derived from mES or P-mES cells was confirmed. Conclusion: This study suggested that P-mES cells can be successfully established and that those cell lines have similar characteristics to mES cells.

The Role of Survival Motor Neuron Protein associated with Function of Spinal Motor Neuron (척수 운동신경원의 기능과 관련된 생존운동신경원 단백질의 역할)

  • Song, Ju-Young;Kown, Young-Shil;Nam, Ki-Won;Song, Ju-Min;Kim, Dong-Hyun;Kim, Suk-Bum;Moon, Dong-Chul;Choi, Ji-Ho;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.433-444
    • /
    • 2001
  • This review highlights the ontogenesis and the differentiation of motor neuron in spinal cord, and introduce the survival motor neuron(SMN) which is associated with growth and survival of motor neurons. The differentiation of floor plate cells and motor neurons in the vertebrate neural tube appears to be induced by signals from the notochord. This signal is Sonic hedgehog(Shh). The early development of motor neurons involves the inductive action of Shh. The SMN gene is essential for embryonic viability. SMN mRNA is also expressed in virtually all cell types in spinal cord, including large motor neurons. The SMN protein is involved in RNA processing and during early embryonic development is necessary fer cell survival. Two SMN genes are present in 5q 13 in humans: the telomeric gene(SMNt), which is the SMA-determining gene, and the centromeric analog gene(SMNc). The majority of transcripts from the SMNt gene are full length but, major transcripts of the SMNc gene have a high degrees of alternative splicing and tend to have little or no exon 7. The SMN is involved in the RNA processing(the biogenesis of snRNPs and pre-mRNA splicing), the anti-apoptotic effects, and regulating gene expression.

  • PDF

Detection of Peripheral Blood Telomerase Activity from Gastric Cancer Patients (위암 환자의 혈액에서 Telomerase 활성도 검출의 의의)

  • Park Ki Ho;Jung Soon Jai;Yu Young Woon;Park Sung Hwan;Lee Han Il;Joo Dae Hyun;Park Ki Hyuk;Choi Dong Rak;Jeon Chang Ho
    • Journal of Gastric Cancer
    • /
    • v.3 no.4
    • /
    • pp.201-205
    • /
    • 2003
  • Purpose: Telomerase activity is generally absent in primary cell cultures and normal tissues. Telomerase is known to be induced upon immortalization or malignant transformation of human cells. Telomerase activity can be increased in immature lymphocytes and activated lymphocytes, but it is not detected in the peripheral blood of normal persons. The authors analyzed peripheral blood telomerase from patients of gastric cancer to evaluate the possibility of using it for diagnosis and as a prognostic factor. Materials and Methods: We obtained blood samples from 11 inflammatory patients and 64 gastric cancer patients. The telomerase activity was measured using the [PCR-ELISA] method. The results were correlated with the T, N, M stage, cell differentiation, vascular, neural, and lymphatic invasion, tumor size, and tumor location. Results: In the 11 inflammatory patients, telomerase activity was not detected while in the gastric cancer patients, a positive rate of $28.1\%$ was noted. The peripheral telomerase activity was not related with tumor size, tumor site, lymphatic and vascular invasion, stage, or histologic differentiation. Conclusion: The peripheral blood telomerase activity for patients of gastric cancer can be utilized as a marker for the diagnosis of not only advanced gastric cancer, but also relatively early stage gastric cancer, but not as a prognostic factor.

  • PDF

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Normal and Disordered Formation of the Cerebral Cortex : Normal Embryology, Related Molecules, Types of Migration, Migration Disorders

  • Lee, Ji Yeoun
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.3
    • /
    • pp.265-271
    • /
    • 2019
  • The expansion and folding of the cerebral cortex occur during brain development and are critical factors that influence cognitive ability and sensorimotor skills. The disruption of cortical growth and folding may cause neurological disorders, resulting in severe intellectual disability and intractable epilepsy in humans. Therefore, understanding the mechanism that regulates cortical growth and folding will be crucial in deciphering the key steps of brain development and finding new therapeutic targets for the congenital anomalies of the cerebral cortex. This review will start with a brief introduction describing the anatomy of the brain cortex, followed by a description of our understanding of the proliferation, differentiation, and migration of neural progenitors and important genes and molecules that are involved in these processes. Finally, various types of disorders that develop due to malformation of the cerebral cortex will be discussed.

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.