• 제목/요약/키워드: Neural Network controller

검색결과 1,126건 처리시간 0.023초

웨이블렛 신경회로망 제어기를 이용한 비선형 시스템의 위치 제어에 관한 연구 (The Study on Position Control of Nonlinear System Using Wavelet Neural Network Controller)

  • 이재현
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2365-2370
    • /
    • 2008
  • 본 논문에서는 비선형 시스템의 위치 제어를 위하여 웨이블렛 신경회로망 제어기를 구성하였으며, 웨이블렛 신경회로망은 LQR 제어기의 성능을 향상 시킬 목적으로 사용한다. 불안전한 비선형 시스템을 선형화 시키고 안정화된 선형 시스템을 만들기 위하여 LQR를 사용하며, 외란에 효과적으로 적응하기 위하여 웨이블렛 신경회로망 제어기를 사용한다. 이 제어기를 비선형 시스템의 위치 제어에 적용하여 실험을 통해 그 유효성을 검정하였다.

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAI Controller)

  • 남수명;고재섭;최정식;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권4호
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

IPMSM 드라이브의 속도제어를 위한 적응 FNN제어기의 설계 (Design of Adaptive FNN Controller for Speed Contort of IPMSM Drive)

  • 이정철;이홍균;정동화
    • 전자공학회논문지SC
    • /
    • 제41권3호
    • /
    • pp.39-46
    • /
    • 2004
  • 본 논문은 IPMSM 드라이브의 고성능 속도 제어를 위하여 퍼지제어와 신경회로망을 혼합 구성한 적응 FNN 제어기를 제시한다. 적응 FNN 제어기는 기준 모델에 기초한 적응 메카니즘을 적용하여 신경회로망의 고도의 적응제어와 퍼지제어기의 강인성 제어의 장점들을 접목한다. 적응 FNN 제어기의 출력은 FNN 제어기의 출력과 적응 퍼지제어의 출력을 합하여 출력을 얻는다. 적응 FNN 제어기는 다양한 동작조건에서 응답특성을 분석하고 평가한다. 제시한 적응 FNN 제어기의 타당성은 IPMSM 드라이브 시스템에 적용하여 성능 결과로 입증한다.

신경회로망을 이용한 PID구조를 갖는 자기동조제어기의 설계 (Design of a Self-tuning Controller with a PID Structure Using Neural Network)

  • 조원철;정인갑;심태은
    • 전자공학회논문지SC
    • /
    • 제39권6호
    • /
    • pp.1-8
    • /
    • 2002
  • 본 논문에서는 시간지연이 존재하고 시스템의 영점이 단위원 밖에 있으며 시스템 파라미터가 변하는 비선형 시스템에 적응하는 신경회로망을 이용한 PID구조를 갖는 일반화 최소분산 자기동조제어기를 제안한다. 신경회로망은 제어기 파라미터를 추정하며 제어 출력은 추정된 제어기 파라미터로부터 얻어진다. 제어 알고리듬의 타당성을 확인하기 위해 시간 지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 비선형 비최소위상 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 그리고 신경회로망을 이용한 직접 적응 제어기와 비교하였다.

초고속 유도전동기 구동을 위한 신경회로망 제어기 설계 (Design of Neural Network Controllers for High Speed Induction Motor Drives)

  • 김윤호;이병순;성세진
    • 전력전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.39-45
    • /
    • 1997
  • 초고속 전동기 구동 시스템을 위하여 간접 신경회로망 제어기를 제안하였다. 고속의 가변 전동기구동에서의 속도응답은 긴 정착시간과 높은 오버슈트의 영향에 있게 되므로 고성능을 위하여 신경회로망 제어기와 신경회로망 에뮬레이터로 구성된 제어기를 사용하였으며, 신경회로망 에뮬레이터는 고속 전동기의 정수와 특성을 동정하는데 사용하였고, 제어기의 학습은 접속강도가 백프로퍼게이션에 의해 조절되도록 하였다. 그리고 시뮬레이션과 실험을 통하여 제안된 시스템의 특성과 장점을 확인하였다.

  • PDF

SPMSM 드라이브의 속도제어를 위한 HAI 제어 (HAI Control for Speed Control of SPMSM Drive)

  • 이홍균;이정철;정동화
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.8-14
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.

다층 신경회로망을 이용한 DC Servo Motor 제어방법 (A Control Method of DC Servo Motor Using a Multi-Layered Neural Network)

  • 김석우;김준식;유종선;이영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.855-858
    • /
    • 1995
  • A neural network has very simple construction (input, output and connection weight) and then it can be robusted against some disturbance. In this paper, we proposed a neuro-controller using a Multi-Layered neural network which is combined with PD controller. The proposed neuro-controller is learned by backpropagation learning rule with momentum and neuro-controller adjusts connection weight in neural network to make approximate dynamic model of DC Servo motor. Computer Simulation results show that the proposed neuro-controller's performance is better than that of origianl PD controller.

  • PDF

레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구 (Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor)

  • 장평수;장은수;전상운;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

궤도차량의 속도 및 자세 제어를 위한 뉴럴-퍼지 제어기 설계 (Neural-Fuzzy Controller Design for the Azimuth and Velocity Control of a Track Vehicle)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.68-75
    • /
    • 1997
  • This paper presents a new approach to the design of neural-fuzzy controller for the speed and azimuth control of a track vehicle. The proposed control scheme uses a Gaussian function as a unit function in the frzzy-neural network, and back propagaton algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a track vehicle driven by two independent wheels.

  • PDF