• Title/Summary/Keyword: Neural Network Theory

Search Result 373, Processing Time 0.022 seconds

Force controller of the robot gripper using fuzzy-neural fusion (퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

Development of Traffic Accidents Prediction Model With Fuzzy and Neural Network Theory (퍼지 및 신경망 이론을 이용한 교통사고예측모형 개발에 관한 연구)

  • Kim, Jang-Uk;Nam, Gung-Mun;Kim, Jeong-Hyeon;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.81-90
    • /
    • 2006
  • It is important to clarify the relationship between traffic accidents and various influencing factors in order to reduce the number of traffic accidents. This study developed a traffic accident frequency prediction model using by multi-linear regression and qualification theories which are commonly applied in the field of traffic safety to verify the influences of various factors into the traffic accident frequency The data were collected on the Korean National Highway 17 which shows the highest accident frequencies and fatality rates in Chonbuk province. In order to minimize the uncertainty of the data, the fuzzy theory and neural network theory were applied. The neural network theory can provide fair learning performance by modeling the human neural system mathematically. Tn conclusion, this study focused on the practicability of the fuzzy reasoning theory and the neural network theory for traffic safety analysis.

Global Function Approximations Using Wavelet Neural Networks (웨이블렛 신경망을 이용한 전역근사 메타모델의 성능비교)

  • Shin, Kwang-Ho;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.753-759
    • /
    • 2009
  • Feed-forward neural networks have been widely used as function approximation tools in the context of global approximate optimization. In the present study, a wavelet neural network (WNN) which is based on wavelet transform theory is suggested as an alternative to a traditional back-propagation neural network (BPN). The basic theory of wavelet neural network is briefly described, and approximation performance is tested using a nonlinear multimodal function and a composite rotor blade analysis problem. Laplacian of Gaussian function, Mexican function, and Morlet function are considered during the construction of WNN architectures. In addition, approximation results from WNN are compared with those from BPN.

Computation of Noncentral F Probabilities using Neural Network Theory (신경망이론을 이용한 비중심 F분포 확률계산)

  • 구선희
    • Journal of the Korea Society of Computer and Information
    • /
    • v.1 no.1
    • /
    • pp.83-94
    • /
    • 1996
  • The test statistic in ANOVA tests has a single or doubly noncentral F distribution and the noncentral F distribution is applied to the calculation of the power functions of tests of general linear hypotheses. In this paper. the evaluation of the cumulative function of the single noncentral F distribution is applied to the neural network theory. The neural network consists of the multi-layer perceptron structure and learning process has the algorithm of the backpropagation. Numerical comparisons are made between the results obtained by neural network theory and the Patnaik's values.

  • PDF

Neural Network Learning Algorithm for Variable Structure System (가변구조 시스템을 위한 신경회로망 학습 알고리즘)

  • Cho, Jeong-Ho;Lee, Dong-Wook;Kim, Young-T.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.401-403
    • /
    • 1996
  • In this paper, a new control strategy is presented that combines sliding mode control theory with a neural network. Sliding mode control theory requires the complete knowledge of the dynamics of the controlled system. However, in practice, one often bas only a small number of state measurements. This could be a serious limitation on the practical usefulness of sliding mode control theory. A multilayer neural network is employed to solve this kind of problem. The neural network serves as a compensator without a prior knowledge about the system. The proposed control algorithm is applied to a class of uncertain nonlinear system. The robustness against parameter uncertainty, nonlinearity and external disturbances, and the effectiveness is verified by the simulation results.

  • PDF

A Study on the Nonlinear Modeling of Base Isolator Systems by a Neural Network Theory : Application to Lead Rubber Bearings (신경망 이론을 이용한 지진격리 장치의 비선형 모델링 기법 연구 : 납삽입 적층 고무베어링에 적용한 예)

  • 허영철;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.433-441
    • /
    • 2003
  • In this paper, a study on the nonlinear modeling of lead rubber bearings(LRBs) by a neural network theory was carried out. The random tests on the LRB were used for a training of neural network model. Numerical simulations using the neural network model were peformed on a scaled structural model with the LRBs excited by three type of seismic loads and compared with the shaking table tests. As a result, it was shown that the neural network model would be useful to a numerical modeling of LRB.

  • PDF

Growing Algorithm of Wavelet Neural Network (웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김성주;김성현;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

Adaptive Clustering Algorithm for Recycling Cell Formation: An Application of Fuzzy ART Neural Networks

  • Seo, Kwang-Kyu;Park, Ji-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2137-2147
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling part families using group technology in their end-of-life phase. Disposal products have the uncertainties of product status by usage influences during product use phase, and recycling cells are formed design, process and usage attributes. In order to deal with the uncertainties, fuzzy set theory and fuzzy logic-based neural network model are applied to recycling cell formation problem for disposal products. Fuzzy C-mean algorithm and a heuristic approach based on fuzzy ART neural network is suggested. Especially, the modified Fuzzy ART neural network is shown that it has a good clustering results and gives an extension for systematically generating alternative solutions in the recycling cell formation problem. Disposal refrigerators are shown as examples.

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF