• Title/Summary/Keyword: Neural Network Identification

Search Result 567, Processing Time 0.022 seconds

Identification of Friction Condition with Neural Network (신경회로망에 의한 마찰상태의 식별)

  • 조연상;서영백;박흥식;전태옥
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.83-90
    • /
    • 1998
  • The morphologies of the wear debris are directly indicative of wear processes occuring in machinery and their severity. The neural network was applied to identify friction condition from the lubricated moving system. The four parameter(50% volumetric diameter, aspect, roundness and reflectivity) of wear debris are used as inputs to the network and learned the friction coefficient. It is shown that identification results depend on the ranges of these shape parameter learned. The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by neural network. We dicuss between the characteristic of wear debris and the friction coefficient and how the network determines difference in wear debris feature.

  • PDF

On-line Training of Neural Network for Monitoring Plant Transients

  • Varde, P.V.;Moon, B.S.;Han, J.B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.129-133
    • /
    • 2003
  • The work described in this paper deals with the proposed application of an Artificial Neural Network Model for the Advanced Pressurized Water Reactor APR-1400 transient identification. The approach adopted for testing the network take note of the expectation which should be fulfilled by a network for real-time application, like testing with data in on-line mode and use of actual or real-life patterns for training. The recall test performed demonstrates that use of neural network for transient identification is indeed an attractive preposition.

  • PDF

NEURAL NETWORK DYNAMIC IDENTIFICATION OF A FERMENTATION PROCESS

  • Syu, Mei-J.;Tsao, G.T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1021-1024
    • /
    • 1993
  • System identification is a major component for a control system. In biosystems, which is nonlinear and dynamic, precise identification would be very helpful for implementing a control system. It is difficult to precisely identify such non-linear systems. The measurable data on products from 2,3-butanediol fermentation could not be included in a process model based on kinetic approach. Meanwhile, a predictive capability is required in developing a control system. A neural network (NN) dynamic identifier with a by/(1+ t ) transfer function was therefore designed being able to predict this fermentation. This modified inverse NN identifier differs from traditional models in which it is not only able to see but also able to predict the system. A moving window, with a dimension of 11 and a fixed data size of seven, was properly designed. One-step ahead identification/prediction by an 11-3-1 BPNN is demonstrated. Even under process fault, this neural network is still able to perform several-step ahead prediction.

  • PDF

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

Design of nonlinear system controller based on radial basis function network (Radial Basis 함수 회로망을 이용한 비선형 시스템 제어기의 설계에 관한 연구)

  • 박경훈;이양우;차득근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1165-1168
    • /
    • 1996
  • The neural network approach has been shown to be a general scheme for nonlinear dynamical system identification. Unfortunately the error surface of a Multilayer Neural Network(MNN) that widely used is often highly complex. This is a disadvantage and potential traps may exist in the identification procedure. The objective of this paper is to identify a nonlinear dynamical systems based on Radial Basis Function Networks(RBFN). The learning with RBFN is fast and precise. This paper discusses RBFN as identification procedure is based on a nonlinear dynamical systems. and A design method of model follow control system based on RBFN controller is developed. As a result of applying this method to inverted pendulum, the simulation has shown that RBFN can be used as identification and control of nonlinear dynamical systems effectively.

  • PDF

A study on the model reference adaptive control using neural network (신경회로망을 이용한 기준모델 제어기에 관한 연구)

  • 조규상;김규남;양태진;유시영;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.243-247
    • /
    • 1992
  • This paper describes a neural network based control scheme with MRAC. The system consists of two neural network; one is for identifier and the other is for controller. Identification is firstly performed to learn the behavior of the nonlinear plant. Neural net controller is next trained by backpropagating the error at the output of plant through the identifier. Also the training method used in this paper repeatedly updates weights of neural network to track the reference model.

  • PDF

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

Linear/nonlinear system identification and adaptive tracking control using neural networks (신경회로망을 이용한 선형/비선형 시스템의 식별과 적응 트래킹 제어)

  • 조규상;임제택
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, a parameter identification method for a discrete-time linear system using multi-layer neural network is proposed. The parameters are identified with the combination of weights and the output of neuraons of a neural network, which can be used for a linear and a nonlinear controller. An adaptive output tracking architecture is designed for the linear controller. And, the nonlinear controller. A sliding mode control law is applied to the stabilizing the nonlinear controller such that output errors can be reduced. The effectiveness of the proposed control scheme is illustrated through simulations.

  • PDF

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.