• Title/Summary/Keyword: Neural Net

Search Result 763, Processing Time 0.024 seconds

Speech Recognition by Neural Net Pattern Recognition Equations with Self-organization

  • Kim, Sung-Ill;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2E
    • /
    • pp.49-55
    • /
    • 2003
  • The modified neural net pattern recognition equations were attempted to apply to speech recognition. The proposed method has a dynamic process of self-organization that has been proved to be successful in recognizing a depth perception in stereoscopic vision. This study has shown that the process has also been useful in recognizing human speech. In the processing, input vocal signals are first compared with standard models to measure similarities that are then given to a process of self-organization in neural net equations. The competitive and cooperative processes are conducted among neighboring input similarities, so that only one winner neuron is finally detected. In a comparative study, it showed that the proposed neural networks outperformed the conventional HMM speech recognizer under the same conditions.

Dynamic Adjustment of the Pruning Threshold in Deep Compression (Deep Compression의 프루닝 문턱값 동적 조정)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely utilized due to their outstanding performance in various computer vision fields. However, due to their computational-intensive and high memory requirements, it is difficult to deploy CNNs on hardware platforms that have limited resources, such as mobile devices and IoT devices. To address these limitations, a neural network compression research is underway to reduce the size of neural networks while maintaining their performance. This paper proposes a CNN compression technique that dynamically adjusts the thresholds of pruning, one of the neural network compression techniques. Unlike the conventional pruning that experimentally or heuristically sets the thresholds that determine the weights to be pruned, the proposed technique can dynamically find the optimal thresholds that prevent accuracy degradation and output the light-weight neural network in less time. To validate the performance of the proposed technique, the LeNet was trained using the MNIST dataset and the light-weight LeNet could be automatically obtained 1.3 to 3 times faster without loss of accuracy.

Estimation of weld pool sizes in GMA welding processes using a multi-layer neural net (다층 신경회로망을 이용한 GMA 용접 공정에서의 용융지 크기의 예측)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1028-1033
    • /
    • 1991
  • This paper describes the design of a neural network estimator to estimate weld pool sizes for on-line use of quality monitoring and control in GMA welding processes. The estimator utilizes surface temperatures measured at various points on the top surface of the weldment as its input. The main task of the neural net is to realize the mapping characteristics from the point temperatures to the weld pool sizes through training, A series of bead-on plate welding experiments were performed to assess the performance of the neural estimator.

  • PDF

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

The Capacity of Core-Net : Multi-Level 2-Layer Neural Networks (2층 다단 신경망회로 코어넷의 처리용량에 관한 연구)

  • Park, Jong-Jun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2098-2115
    • /
    • 1999
  • One of the unsolved problems in Neural Networks is the interpretation of hidden layers. This paper defines the Core-Net which has an input(p levels) and an output(q levels) with 2-layers as a basic circuit of neural network. In have suggested an equation, {{{{ {a}_{p,q} = {{q}^{2}} over {2}p(p-1)- { q} over {2 } (3 { p}^{2 } -7p+2)+ { p}^{2 }-3p+2}}}}, whichs ws the capacity of the Core-Net and have proved it by using the mathematical induction. It has been also shown that some of the problems with hidden layers can be solved by using the Core-Net and using simulation of an example.

  • PDF

Improved Performance of Image Semantic Segmentation using NASNet (NASNet을 이용한 이미지 시맨틱 분할 성능 개선)

  • Kim, Hyoung Seok;Yoo, Kee-Youn;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.274-282
    • /
    • 2019
  • In recent years, big data analysis has been expanded to include automatic control through reinforcement learning as well as prediction through modeling. Research on the utilization of image data is actively carried out in various industrial fields such as chemical, manufacturing, agriculture, and bio-industry. In this paper, we applied NASNet, which is an AutoML reinforced learning algorithm, to DeepU-Net neural network that modified U-Net to improve image semantic segmentation performance. We used BRATS2015 MRI data for performance verification. Simulation results show that DeepU-Net has more performance than the U-Net neural network. In order to improve the image segmentation performance, remove dropouts that are typically applied to neural networks, when the number of kernels and filters obtained through reinforcement learning in DeepU-Net was selected as a hyperparameter of neural network. The results show that the training accuracy is 0.5% and the verification accuracy is 0.3% better than DeepU-Net. The results of this study can be applied to various fields such as MRI brain imaging diagnosis, thermal imaging camera abnormality diagnosis, Nondestructive inspection diagnosis, chemical leakage monitoring, and monitoring forest fire through CCTV.

Comparison of Deep Learning Models for Judging Business Card Image Rotation (명함 이미지 회전 판단을 위한 딥러닝 모델 비교)

  • Ji-Hoon, Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.34-40
    • /
    • 2023
  • A smart business card printing system that automatically prints business cards requested by customers online is being activated. What matters is that the business card submitted by the customer to the system may be abnormal. This paper deals with the problem of determining whether the image of a business card has been abnormally rotated by adopting artificial intelligence technology. It is assumed that the business card rotates 0 degrees, 90 degrees, 180 degrees, and 270 degrees. Experiments were conducted by applying existing VGG, ResNet, and DenseNet artificial neural networks without designing special artificial neural networks, and they were able to distinguish image rotation with an accuracy of about 97%. DenseNet161 showed 97.9% accuracy and ResNet34 also showed 97.2% precision. This illustrates that if the problem is simple, it can produce sufficiently good results even if the neural network is not a complex one.

Analysis of unfairness of artificial intelligence-based speaker identification technology (인공지능 기반 화자 식별 기술의 불공정성 분석)

  • Shin Na Yeon;Lee Jin Min;No Hyeon;Lee Il Gu
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • Digitalization due to COVID-19 has rapidly developed artificial intelligence-based voice recognition technology. However, this technology causes unfair social problems, such as race and gender discrimination if datasets are biased against some groups, and degrades the reliability and security of artificial intelligence services. In this work, we compare and analyze accuracy-based unfairness in biased data environments using VGGNet (Visual Geometry Group Network), ResNet (Residual Neural Network), and MobileNet, which are representative CNN (Convolutional Neural Network) models of artificial intelligence. Experimental results show that ResNet34 showed the highest accuracy for women and men at 91% and 89.9%in Top1-accuracy, while ResNet18 showed the slightest accuracy difference between genders at 1.8%. The difference in accuracy between genders by model causes differences in service quality and unfair results between men and women when using the service.

Comparison of Image Classification Performance in Convolutional Neural Network according to Transfer Learning (전이학습에 방법에 따른 컨벌루션 신경망의 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1387-1395
    • /
    • 2018
  • Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.

GRAYSCALE IMAGE COLORIZATION USING A CONVOLUTIONAL NEURAL NETWORK

  • JWA, MINJE;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.26-38
    • /
    • 2021
  • Image coloration refers to adding plausible colors to a grayscale image or video. Image coloration has been used in many modern fields, including restoring old photographs, as well as reducing the time spent painting cartoons. In this paper, a method is proposed for colorizing grayscale images using a convolutional neural network. We propose an encoder-decoder model, adapting FusionNet to our purpose. A proper loss function is defined instead of the MSE loss function to suit the purpose of coloring. The proposed model was verified using the ImageNet dataset. We quantitatively compared several colorization models with ours, using the peak signal-to-noise ratio (PSNR) metric. In addition, to qualitatively evaluate the results, our model was applied to images in the test dataset and compared to images applied to various other models. Finally, we applied our model to a selection of old black and white photographs.