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a b s t r a c t

Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engi-
neering design, it is very essential and crucial to monitor flow patterns and their transitions accurately.
With the high-speed development and success of deep learning based on convolutional neural network
(CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally,
the photographing technique has attractive implementation features as well, since it is normally
considerably less expensive than other techniques. The development of such a two-phase flow pattern
online monitoring system is the objective of this work, which seldom studied before. The ongoing
preliminary engineering design (including hardware and software) of the system are introduced. The
flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several
potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with
each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN
network for the system owing to its high precision, fast classification and strong robustness. This work
can be a reference for the online monitoring system design in the energy system.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Two-phase flow may almost exist in every branch of the energy
industry, such as conventional petroleum, solar energy, nuclear en-
ergy, refrigeration, geothermal energy extraction, offshore wind
turbines, and various types of chemical reactors [1,2], which leads to
different types of flow patterns (also called flow regimes). The ex-
istence of a particular flow pattern depends on a variety of param-
eters, which include the properties of the fluids, the flow channel
size, geometry and orientation, body force field and flow rates, etc.,
[3]. On the other hand, the accuracy and stability of the online
measurement of numerous parameters (e.g., two-phase flow rate),
which is essential for the energy industry, depend on the online
prediction of flow pattern [4]. It is very essential and crucial to
monitor flow patterns and their transitions accurately not only
during normal operations (for the purpose of optimizing the overall
performance) but also potential abnormal transient (for the purpose
of enhancing the safety by fast response) of the energy systems [5,6].
).

by Elsevier Korea LLC. This is an
For example, slug flow is very common in offshore gas production
and transportation systems; stratified flow is frequently observed in
petroleum and natural gas systems [7]. For safety-critical applica-
tions such as nuclear energy, one misidentification can lead to an
irreparable disaster [8,9]. It was shown in some practical experi-
ments that proposed online monitoring system can improve the
effectiveness of energy system, save time in searching abnormal
cause and prevent accidents from happening [10].

Nowadays, instrument-based flow pattern identification is of
interest in the design, analysis and operation of many two-phase
flow systems owing to its higher accuracy. The instrument-based
measurement methods can be divided into two types: intrusion
and non-intrusion. The intrusive measurement of the flow pattern is
a directmeasurement, but the probesmay impact or change the flow
patterns [11]. Commonly, intrusive techniques involve high costs
associated with installation and maintenance [12]. Since images of a
flow can be produced in transparent pipes easily with visible light,
and either X-rays or gamma-rays are applicable inmetal pipes [13], a
more challenging alternative would be to use these images as non-
intrusive methods. Non-intrusive measurements, such as dynamic
neutron radiographic images and high-speed camera photos,
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Fig. 1. Schematic of the flow pattern online monitoring system.
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constitute easily obtainable global and high qualitative signals of
two-phase flow patterns, comparing with those of intrusive mea-
surements, which may exhibit location-dependency and require
lengthy capture times. Furthermore, non-intrusive techniques may
reduce costs. According to the literature, it is no doubt that non-
intrusive measurement is the development direction for flow
pattern identification.

But one problem for the non-intrusive techniques is that they
may be less accurate compared with intrusive techniques [12]
while there is an increasing demand for more accurate two-phase
flow pattern identification in the last decades with the develop-
ment of technology and requirement of the industry. Due to this
fact, many investigations on non-intrusive techniques are found in
the literature with the aim of improving accuracy [14,15].

The introduction of artificial intelligence and artificial neural
network (ANN) into the energy industry was a frontier topic these
years,which led to severalmethodologies based onmachine learning
adopted to predict flow patterns in the two-phase flow [16,17]. With
the high-speed development and success of deep learning based on
convolutional neural network (CNN), the study of flow pattern iden-
tification in recent five years almost focused on this methodology
[18,19].

Furthermore, many researchers have worked on the online
recognition of flow patterns [20]. Xie and Ghiaasiaan [21] have
proposed on online two-phase flow pattern identification method
based on ANN. Xie et al. [22] have introduced a fuzzy recognition
method for online flow pattern identification. In the recent years,
several online monitoring system of two-phase flow pattern based
on deep learning have been developed [23,24]. The most popular
deep learning method nowadays is CNN, which has the potential
application for flow pattern online monitoring. Although there were
several works in the literature that aim to identify the two-phase
flow patterns offline using CNN or other methodologies, there is a
lack of tools to monitor the flow pattern online during normal op-
erations and abnormal conditions. The limit to this technology is that
the training of images for ANN is always time-consuming.

To solve this dilemma, the principal objective of this study focuses
on developing a methodology of an online flow pattern monitoring
system,which isbasedonCNNand transfer learning. It is thought that
this method responds faster and costs lower than other monitoring
system. This system is useful for both the designpractitioners and the
researchers in energy engineering, and benefits to their collaboration
[25]. The proposed framework for developing the online monitoring
system includes dataset image library creation, data augmentation,
CNN model generation, and performance evaluation, etc. The main
contributions of this paper can be summarized as follows:

(1) a draft version of two-phase flow pattern online monitoring
system is built based on CNN and the transfer learning. The
benefit of this system is high precision, fast classification,
strong robustness.

(2) several state-of-the-art CNNs were selected as potential
candidates for the system. After a preliminary comparison of
them in detail, the ResNet50 network is suggested since it is
accurate, robust to noise, and swift.

The rest of this paper is organized as follows. Section 2 will
introduce the structure of the flow pattern online monitoring sys-
temwhich is under preliminary design. Section 3 will introduce the
machine learning algorithm of the online monitoring system e (1)
CNN methodology and the potential CNN candidates, (2) transfer
learning. Section 4 will analyze the adaptability of potential CNNs
step by step based on a two-phase flow pattern dataset, making our
selection e ResNet50 e convincing. Finally, the conclusion of the
work is presented in Section 5.
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2. Structure of the flow pattern online monitoring system

The flow pattern online monitoring system is under design
currently. It could be divided into two parts: the hardware and the
software.

2.1. Hardware design

The schematic of the system is shown in Fig. 1. The hardware of
the system consists of pipe sections, controllers, light sources, high-
speed cameras and computer (with monitor). In Fig. 1, “1� N”
means that the online monitoring system has the capability of
identifying the flow patterns at several pipe sections simulta-
neously. The arrows in the figure represent the direction of fluid or
data transmission. Actually, this system may be online or offline
depending on its application scenarios, its data processing mode
and capability. It should be noted that if the application scenario is
opaque pipe, instead of camera images, other non-intrusive in-
strument (e.g., neutron radiography and gamma-rays, etc.) may be
used and the method for software may be modified
correspondingly.

(1) the fluid information (e.g., the fluid material, the mass flow,
pressure and temperature, etc.) at the pipe inlet is controlled
and monitored by a “controller”. As feedback, the above-
mentioned parameters may be adjusted by the controller
according to the actual requirement.

(2) a light source is used for a more suitable surrounding envi-
ronment for photographing, making the images clearer for
analysis. Furthermore, the light source may connect with the
high-speed camera, and work synchronously with it to
enhancing the availability of the images.

(3) the pipe sections are observed using high-speed cameras. To
guarantee the suitability and precision of the images during
the measurements, the mode, resolution, photo frequency
(in frames per second, fps) and position, etc. of the cameras,
should be designed and adjusted. The real-time flow pattern
image data will be transfer to the computer by the data
converters and high-speed cables between the computer and
cameras.

(4) themonitoring system is based on software on the computer,
which is the most significant part and will be introduced in
the following part of this section.
2.2. Software design

The preliminary design of the software interface for the flow
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pattern onlinemonitoring system is shown in Fig. 2. The interface is
divided into two parts: (1) the display area, and (2) the analysis and
control area. The display area is used for summarizing the
comprehensive information of the pipe sections, the cameras, and
most importantly the images, from different sensors/terminals. The
real-time image can be chosen and displayed on the screen if it is
required by the user. The area for analysis and control has the
following four functions:

(1) CNN network selection: for preliminary design, several CNN
networks (such as GoogLeNet [26], VggNet [27], ResNet [28],
etc.) have been considered as available options for
classification.

(2) CNN identification procedure monitor: including the pre-
processing of the images, training and testing of the images
dataset, and the result plots;

(3) the pipe section and camera parameter control: according to
the application conditions of the two-phase flow, the re-
quirements of the pipe section and camera parameters, and
the results of CNN classifier, the related parameters may be
controlled and adjusted as feedbacks;

(4) as an objective of the proposed system, if some abnormal
flow patterns or parameters are detected, the online moni-
toring system will be responded to by using corresponding
function.

The functions 1) and 2) of the analysis and control area are the
key algorithms of the system. They directly affect the success of the
system as flow pattern classifiers. Therefore, the algorithms and the
effectiveness validations will be discussed in the following two
sections.
3. Methodology of the flow pattern online monitoring system

The key of the flow pattern online monitoring system is the
feature extraction and selection of the real-time flow pattern im-
ages. An effective and robust classification method is needed.
Currently, CNN becomes dominant in various computer vision tasks
and attracted interest across a variety of domains [29,30], such as
Fig. 2. Software interface design for the flo
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image classification, speech recognition, behavior recognition,
natural language processing, and so on. However, the applications
of CNN in the research field of flow pattern identification are very
limited, and most importantly, they only considered the offline
application. To apply the CNN classifier to identify the online flow
patterns, two issues would be overcome: (1) which CNN networks
are with high accuracy and efficiency for the application of flow
pattern identification? (2) how to make the time-consuming
training procedure more effective? To answer these two ques-
tions, we would like to introduce our methodology in this section
and validate them in section 4.
3.1. The CNN methodology

CNN is a special structure of ANN. Its inputs are two-
dimensional images and the features of the images can be auto-
matically obtained by CNN. For detailed knowledge about CNN, any
related classic literature or monograph [31,32] could be resorted to.
Here only the most important and related information is given. The
procedure by using CNN for image classification can be illustrated
in Fig. 3 briefly, which can be divided into three steps as follows.

(1) Step 1 (CNN input, blue shading in Fig. 3) prepares the image
dataset and its transformed data for CNN calculation. Some
specific pretreatments in this step are introduced including
image labeling, preprocessing (including image resizing and
augmentation) and random division of images into training
sets and test sets.

(2) Step 2 (CNN convolution and pooling layers, grey shading in
Fig. 3), the image data space is transformed to extracted
feature space after the calculations in designated convolu-
tion and pooling layers. This step is very crucial for the suc-
cess of CNN methodology to extract the image features, and
different CNNs have different architectures in this part.

(3) Step 3 (CNN fully connected (FC) classification layers), the
extracted image features are used to build the FC layers and
to get the classification results in image label space based on
the classifier. In a CNN, the FC layers can be considered as a
w pattern online monitoring system.



Fig. 3. The procedure by using CNN for image classification.
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multilayer perceptron (MLP) [33], and a softmax function is
used after the FC layers as a classifier.

Although the general steps of classification are the same for
different types of CNNs, their structures are quite different. There is
no uniform statement about which type of CNN network is better
for application. The following part of this section will introduce
some typical CNNs, which may be the potential candidates for the
flow pattern online monitoring system.

(1) AlexNet: it includes 5 convolutional layers and 3 FC layers
[34]. After each convolutional layer or FC layer, there is a
ReLU function f ðxÞ ¼ maxð0; xÞ [35] used the first time to deal
with the non-linear part in AlexNet network. Compared with
the traditional Sigmoid function, the ReLU function has the
advantage of faster training speed and to some extent over-
comes the problem of gradient disappearance [36]. Another
feature of the AlexNet architecture is the use of a dropout
layer behind each FC layer to reduce overfitting [37].

(2) VggNet: this architecture was proposed by the VGG group of
Oxford University [28] in 2014. Compared to AlexNet, it re-
places the large-size convolution kernel filter by successively
using multiple filters of 2� 2 and 3� 3 convolution kernel
sizes. The replacement achieves better results than using
larger size convolution kernels and the calculation cost is
lower.

(3) GoogLeNet: it is a sparse CNN that only a few neurons in the
convolutional layer are effective. Compared to AlexNet,
which uses 60 million parameters, GoogLeNet uses only 6.8
million parameters [38]. Moreover, it also uses convolution
kernels of different sizes to capture detailed features of
different scales (5� 5; 3� 3; 1� 1). Another important
feature of GoogLeNet is that it uses a simple “global average
pooling layer” to replace the FC layer at the end of the
network [39].

(4) SqueezeNet: it is lightweight CNN developed by UC Berkeley
and Stanford University [40]. Its significant advantage is that
comparing with other CNN architectures with the same ac-
curacy level, it has a smaller size, which requires much fewer
parameters, consequently reducing memory constraints and
making it a potential candidate for online monitoring ap-
plications. It has already some application of online moni-
toring system in vehicle community [41].

(5) ResNet: it was developed by He et al. [29] to solve the
problem of gradient disappearance effectively since its
modification of CNN architecture. It has been used in the
online monitoring system of the manufacturing process
[42,43]. The key modification to ResNet is to add identity
mapping to the network structure. ResNet has several
different structures, such as ResNet18, ResNet34, ResNet50,
ResNet101 etc. Based on the number of layers in the residual
network. In this work, we selected ResNet18 and ResNet50 as
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potential candidates owing to their good performance in the
monitoring systems [44].

As a summary, a comparison of typical potential candidates
CNNs for online monitoring system is shown in Table .1. Relatively
speaking, ResNet50 is the deepest network with 50 layers;
VggNet16 has the most parameters (more than 138 M) and the
largest size (528MB); SqueezeNet has the least parameters and size
(less than one-tenth of VggNet16).

3.2. Transfer learning

The time-consuming process of CNN network training could be
simplified by the usage of so-called transfer learning. The technique
uses the knowledge gained by an already well-trained model using
another large-scale dataset (for example, Imagenet [44]). It can be
used to solve the dilemma of limit scaled of the dataset and improve
accuracy. When transfer learning is applied, the FC layer in the
original CNN is removed. Instead, a new FC layer with an output size
of four is inserted. Then, a fine-tuning of the modified CNN by
training it with flow pattern images from accessible limited dataset.
The transfer learning in flow pattern identification is shown in Fig. 4.

As a typical example, a fine-tuning process of AlexNet training is
introduced here. Other networks have the same setting and similar
fine-tuning training results. We randomly assigned the images of a
flow pattern dataset with 70% for training and 30% for test. The
options for the AlexNet fine-tuning training were set as shown in
Table 2. As an option of optimization, the stochastic gradient
descent with momentum (SGDM) optimization [45] was chosen to
reduce the training time and the momentum term equaled 0.9. This
fine-tuned network was trained for 20 epochs with a learning rate
of 0.0001. L2 regularization was used to avert the undesirable
overfitting phenomenon. The mini-batch technique [46] was uti-
lized to reduce the requirements for CPU and improve computa-
tional efficiency, as it can randomly select a small portion of the
training samples in the training set for each iteration process of the
model. In this work, the mini-batch size was set at 20.

The features of the flow pattern images were extracted by the
AlexNet network from the randomly chosen training dataset. These
features were given to the classifier, along with the class labels of
training images. The predicted labels for the images were obtained
as output from the classifier. Predicted labels are compared with
true class labels to evaluate the performance of the classifier.
Simultaneously, the test dataset of the flow pattern images was
used for the validation of the performance of the AlexNet network
and demonstration of its generalization ability. The loss functions
and accuracy were monitored during the fine-tuning training
process to show the progress and validation results of training over
iterations, as shown in Fig. 5. The values in the figure are outputted
each three epochs.

According to Fig. 5(a), the loss function values of the training
dataset oscillate during the iterations but the amplitudes of the



Table 1
Comparison of typical potential candidates CNNs for online monitoring system.

CNN model AlexNet VggNet16 GoogLeNet SqueezeNet ResNet18 ResNet50

Year of development 2012 2014 2014 2016 2016 2016
Layers 8 16 19 18 18 50
No. of parameters 59,983,292 138,357,544 6,752,430 1,248,424 11,511,784 25,636,712
Model size (MB) 229 528 49.4 4.4 44.7 98

Fig. 4. Transfer learning for flow pattern online monitoring system.

Table 2
Options setting of AlexNet fine-tuning training.

Parameters

Optimizer. SGDM
Momentum. 0.9
Initial learning rate. 0.0001
L2 Regularization Factor. 0.0001
Mini-batch size. 20
Epoch. 20
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oscillation become smaller and smaller when the iteration went
deeper. After around 300 iterations, the oscillation was almost
negligible, and simultaneously the accuracy for the training dataset
(see Fig. 5(b)) approached 100.0%. The convergence of loss function
to 0.0 and the accuracy to 1.0 indicate adequate training of CNN.
Therefore, CNN has learned to classify training data correctly.

The loss function values of the test (validation) dataset in
Fig. 5(a) were less than 0.1 after about 180 iterations, and their
corresponding accuracy is approximately 98% in Fig. 5(b).
Furthermore, the values for the test (validation) dataset were
comparable with the corresponding values of the training dataset,
Fig. 5. Loss and accuracy during ite
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which means the overfitting was not obvious for the given two-
phase flow pattern dataset.

4. Analysis of the adaptability of CNNs

For the development of a two-phase flow pattern online
monitoring system, the potential candidates of CNNs should be
analyzed for their adaptability to this system, since the adopted
algorithm needs to satisfy the basic requirements for the system:
high precision, fast classification, strong robustness. This section
will focus on the adaptability analysis of potential CNNs, which is
based on MATLAB and its “Deep Learning Toolbox”. All the CNN
methodologies in this study have been already trained and can be
directly used in MATLAB. The transfer learning (see section 3.2) is
achieved by the following three steps: (a) load the structure of the
selected CNN; (b) get the parameters of the CNN fully connected
(FC) layers, which contain the unique and most crucial information
for image classification; (c) combine the CNN information and two-
phase flow patterns base by using transfer learning to build a new
classifier for flow pattern identification. The new classifier has
much less parameters than the original CNN.
rations of fine-tuning training.
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It should be noted that the calculation in this section is based on
the same computing environment. All calculation results are rela-
tively compared with each other. But due to the limitations of the
computing environment, it cannot be compared with the results of
other high-performance computing. Nevertheless, it can already
meet the requirements of our preliminary research. A more
detailed comparison and selection of the algorithm for the online
monitoring system need to be done in the future before the engi-
neering practice of the system.
4.1. Dataset and pre-processing

To analyze the adaptability of potential CNN candidates for the
online monitoring system, a dataset related to vertical upward two-
phase flow patterns (with a total of 564 images) was chosen for the
study. These images were classified into 4 typical flow patterns
(bubbly flow 149 images, slug flow 144 images, churn flow 147
images and annular flow 124 images, respectively). A representa-
tive image for each flow pattern is shown in Fig. 6. It should be
emphasized that since the flow pattern onlinemonitoring system is
under design currently and the objective of this work is to verify the
adaptability of the CNN method for flow pattern identification and
select the potential CNN network to support the preliminary sys-
tem design, the images of the dataset was selected from the liter-
ature for the preliminary study in this work. The details of the
related experimental facility can be found in [47]. It consists of a
transparent test section with an inner diameter of 12.7 mm and a
length of 0.89 m. The different flow patterns were generated by
systematically varying air and water flow rates in a range of
0.001e0.2 kg/min and 1e10 kg/min, respectively. The system
temperature is maintained between 20�C and 25�C, and the system
pressure is found to vary between 1 and 3 bar.

Deep learning requires a lot of data for training. But sometimes
the images for accessible datasets may be limited. Considering the
limited images of the flow pattern dataset, except for the use of
transfer learningmethod, some other enhancementmeasures were
adopted to improve the ability of network classification, such as
image augmentation (translation, rotation, and resizing, etc.) and
cross-validation [48] to reduce the variance and avoid overfitting
(in this study, 10-fold cross-validation was implemented).

It should be emphasized that although the difference between
the Imagenet dataset and the two-phase flow pattern dataset is
significant based on the superficial characterization, the underlying
architectures and characterization of the images have a lot in
common, which guarantee the success of transfer learning. Before
Fig. 6. Two-phase flow patterns re
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the study in this article, the authors have proved the effectiveness
in the transfer learning in the flow pattern identification [49].
4.2. Network comparison

In our preliminary analysis, all of the 6 CNNs in Table .1 were
evaluated on their performance for flow pattern identification. By
using the flow pattern dataset described in section 4.1, the results
are shown in Table .3. All of the networks achieved high accuracies
higher than 95%, except for VggNet16. The SqueezeNet network got
the highest accuracy at 98.8%. From the viewpoint of calculation
time (which means the number of images classified in 1s), AlexNet
and VggNet16 cannot satisfy the basic requirement of 250 fps
(minimum requirement for a high-speed camera [50]) and there-
fore, they are not considered for further discussion.

In order to enhance the randomness of the training set and test
set, and compare the GoogLeNet, SqueezeNet, ResNet18 and
ResNet50 in detail, the dataset was divided into 10 groups
randomly for cross-validation. The results are shown in Fig. 7. In
Fig. 7(a) and (b), the top value of each bar is the average accuracy
and calculation time for each selected network respectively. The
range of the statistical standard deviations (the black lines) of the
10-fold calculations are also shown each network. Consequently, a
more general comparison among these methods can be achieved.

According to Fig. 7(a), the accuracies of networks SqueezeNet and
Resnet50 are comparable (more than 98%), better than the other two
networks. Moreover, the standard deviations for their accuracies are
less than 2%. The recognition speed of transfer learning method for
image identification depends not only on the structure of the
network but also on the occupation and access of computermemory.
By comparing the calculation time in Fig. 7(b), it is obvious that
ResNet50 achieved the fastest recognition speed for two-phase flow
identification. Another advantage of ResNet50 is that its standard
deviation of the calculation time is 42, the lowest of all. This means it
has the strongest robustness of all. Based on the analysis of accuracy,
calculation speed and robustness, the ResNet50 network is sug-
gested for the two-phase flow pattern online monitoring system.
4.3. Failure analysis

Although ResNet50 is suggested in our work, it is important to
understand what the failures are by using it for flow pattern
identification, to improve the results of the network. The confusion
matrix is an important and typical measure to show the results of
classification problems. The confusion matrix could summarize the
presentation in upward flow.



Table 3
Performance comparison of typical potential candidates CNNs.

AlexNet VggNet16 GoogLeNet SqueezeNet ResNet18 ResNet50

Accuracy / % 97.6 94.2 96.5 98.8 95.3 96.5
Calculation time / fps 81 94 660 273 536 1018

Fig. 7. The overall accuracies and calculation times of different CNN networks.
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correct and incorrect classifications in a tabular form. The confusion
matrix Fig. 8 shows the prediction results of 10-fold calculations
(totally around 1690 results). According to Fig. 8, the following
conclusions related to two-phase flow pattern identification can be
obtained:

(1) since the features of bubbly flow are significant comparing
with other patterns in the dataset, it can be identified by the
ResNet50 network correctly.

(2) for the identification of slug flow, the accuracy of ResNet50 is
97.4%, the lowest accuracy of four flow patterns. This means
the main features of slug flow can be extracted by ResNet50.
But it may be misidentified for churn flow or annular flow.

(3) ResNet50 can extract the features of churn flow and get the
corresponding classification. It may be misclassified for
Fig. 8. Confusion matrixes for ResNet50.
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annular flow with very low probabilities. For annular flow, it
has the same situation and maybe misclassified for slug flow
or churn flow.

According to the confusionmatrix, the difficulty of themonitoring
system is the identification of the slugflowowing to its instability and
sensitivity for the boundary condition. It trends to transition to other
flow patterns, which leads to the overlapping between these flow
patterns and thedifficultyof their featureextractions [51]. This typeof
problem could probably be addressed by introducing more slug im-
ages in the future to extract its features more accurately.
5. Conclusions

The development of a two-phase flow pattern online monitoring
system was concentrated on in this work, which seldom studied
before. The ongoing preliminary design (including hardware and
software) of the system were introduced. As the main focus of this
paper, the flow pattern identification method based on a neural
network - CNN - was discussed in detail. Furthermore, in order to
achieve a real-time response to the photographing, transfer learning
was adopted. Several potential CNN candidates such as ALexNet,
VggNet16 and ResNets were introduced and compared with each
other. According to the results, ResNet50 is the most promising CNN
network for the system owing to its high precision (accuracy rate
higher than 98%), fast classification (image identification speed
closer to 1000fps), strong robustness (best of all the candidate CNNs).
Future research will focus on further validation of the proposed al-
gorithm and the building of an online monitoring system for the
two-phase flow pattern identification, to enhance the monitoring
and controlling of the fluid in the experiment and energy system.
Since the difficulty of the flow pattern identification is the images of
slug flow owing to its instability and easy transition to other flow
patterns, this topic will also be paid attention to in the future.
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