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The Capacity of Core-Net: Multi-Level 2-Layer
Neural Networks

Jong-Joon Park’

ABSTRACT

One of the unsolved problems in Neural Networks is the interpretation of hidden lavers. This paper defines the

Core-Net which has an input(p levels) and an output(q lovels) with 2-lavers as a basic circuit of neural network. 1 have

suggested an eguation, a,,_q:—%;f)(ﬁ*l) '“g/(l%p:'*?iﬂ- 2)+p°—3p+2, which shows the capacity of the Core-Net and

have proved it by using the mathematical induction. It has heen alse shown that some of the problems with hidden

layers can he solved by using the Core-Net and using simulation of an example.

1. Introduction

The major purpose of using neural network is a
generalization: to have the outputs of the nct ap-
proximate target values given inputs that are not in
the training set. It has been known that there are
three conditions which are typically necessary for a

good generalization. The first condition is that the

T4 3 oA kg ata g
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inputs to the network contain sufficient information
pertaining to the target, so that therc exists a
mathematical function relating correct outputs to
inputs with the desired degree of aceuracy. The
second condition is the smoothness: a small change
in the inputs should, most of times, produce a small
change in the outputs. The third condition is that
the training samples should be sufficiently large and
should be representative subset of the scts of all

cases{population).



b MLPsOVInlLaver Porceptrons) with stop threshold
Heaviside activation functions, it is needed only two
hidden lavers 1o implement full generality.[1][2} In
MLPs with anvy of a wide variety of continuous
nondinear hidden-laver activation functions, one hidden
laver with an arbitrarily large number of units
suffices for the “universal approximation” pro-
perty[3] But there is no theory vyet (o tell how
many hidden units are needed to approximate any
given function. A few books and articles suggest
several rules to determine the number of units, but
it is impossible to determine a good neural network
architecture only from the number of inputs and
outputs.[4] It critically depends on the number of
training  samples, the amount of noise(the unnec
essary samples), and the complexity of the func
tion(classification) to learn. A rule to find out the
number of needed training samples is to use as
many hidden units as the number of weights times
10 in the network. This rule is concerned with only
overfitting and is unreliable too, The only thing that
we can say is that if the number of training sam-
ples 1s much larger than the number of weights, 1t
is unlikely to get overfitting, but likely to suffer
from underfitting, Ordinary RBF(Radial-Basis Fune-
tion) networks containing only a few hidden units
also produce peculiar, bumpy output functions. Nor-
malized RBF networks are better at approximating
simple smooth surfaces with a small number of hid-
den units.[5][6]

The intelligent wav to decide the number of
hidden units depends on using early stopping or
some other form of regularization. Otherwise, simply
trv many notworks with different numbers of hidden
units, estimate the generalization error for each one,
and choose the network with the minimum estimated
generalization ertor.

This paper defines the Core-nett 2 lavered
multi-level(p levels) mput and output{yg levels)
neural network, The output node of this Core-Net
mav work as a hidden unit in a complicated multi

layered neural networks, since the output node

5}
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fur vadues ob i devels Dowd suppest o theo
rem which is related o the capacity of the Core-
Net oand will prove 1t by mathematical induction. |
will also show a simulation example o prove the

resulis,

2. Multi-Level 2-Lavered Neural Networks

2.1 The Multi-Level Grading Rule (MLGR)

Symbolie values should be converted into nu
meric values so that a linguistic svmbol can be
processed in a neural network system. In order to
have an equal range for each linguistic value, a
MLGR for the conversion of linguistic syvmbols
had been proposed.f7)81 The kw value of the level
of a svmbol which has L levels in total s

represented as

2L ‘

where 1 is the number of levels i a bnguistic
expression, Therefore, the maximum effectve (decision)
range is F1AL, ic. the length of 1AL, In other
words, the linguistic effective range must be less
than 1/L. Here the effective range means the range
for which a linguistic symbol is in effect, that is
the range of the symbol’s value as shown in (Fig.
1). The domain of this range is [0.1], because the
mput values of the neural network and the output of
the sigmoidal acuvation [unction, Equation 1, le
hetween 0 and 1.

Leved Lo
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[Fig. 1) values of each level by grades in qj Levals

A is defined as half of the cffective range of the
levelllinguistic) term v in the kg level and is shown

in (Fig. 2) and (Fig. 3). Here A, is the maximum

¢ffective range.
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(Fig. 2) The effective range A, of a level(linguistic)
term v in the ke Level
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{Fig. 3) The maximum effective Range Ame of a
level(linguistic) term w in the kn Level

2.2 The Definition of the Core—-Net
Definition. (Core-Net):

A CoreNet is a two-lavered Neural Networks
consisting of one inpuf, one threshold and cne out-
put node. The input and output nodes may have

rmulti-levels for their values.

The Core-Net is depicted in (Fig. 4) and the
multi-leveling is shown in (Fig. 1) and (Fig. 2).

From the sigmoid activation function, we can re—
write the output as,

Z — 1
L+ exp( —(2wiX + 6)]
=2 @)
a
8 =— Xw+ 1 —£ 3
g—k
X0—— oz
6
10

(Fig. 4) One input and one output multi-level
neural network

When an mnput X - lx;, x5 x5, . .. x5, 1X| = p, an

output Z = {z;, 22 23 . . . zgf, and the size of Z
|Z1 = g, the total number of possible functicn is ¢
The capacity of the neural network of the above
equation is the number of segments which are
separated by the equations in weight space,

For example, in the case of p=2 and g=7 as shown
in (Fig. 9), the number of segments is 49 which is
d, and the total number of combinatorial function is
also 49. Thus, in this case all the functions arc

implementable by only a 2-layer neural network.
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{Fig. 5) The weight space representation of the
weight equations (p=2, 4=T7)

2.3 The capacity (the number of separable regions) of
the Core-Net

The number of implementable function(the ca-

pacity) is the subset of the possible functions, for

example ¢° in one input with p levels and one

output with q levels.

Theoremn (The Capacity of the Core-Net):

Let the capacityfthe number of separable regions
in the Core-Net with p input levels and g output
levels; there are p(¢—1) lines) is a,, for pgeN,
p=]1 and g=2 Here, N is the set of natural
number, Then the capacity a, ., is as follows!

2
apo=5 Ko=) =@ ~Tp+2+ 1 = 3p+2.
for p=1 and q=2 (4)

Proof (by mathematical induction}:
1. For g=2, a,s=2p (base step).



froFor ol that st Ras one dne and separates
the space (2-D plane) inte two areas. 5o,
a1 =21 the line goes through the original
position and cuts the plane into two regions.
Therefore the equation a,, holds.

2) Assume a,. holds (hypothesis step).

3) For p+1, the number of new separate regions
by adding one line is 2' the line goes through
the original position. So, a@,.,2 1S 4,3 T2, and

18 2(‘0“‘@“ l) =ddpryn.

S0, a,» holds for any p&N (the set of Natural

Number) and p=1.

2. Assume a,,, holds for some p=N, p=1, g=N
and g=2 {(hypothesis step).
3. Now 1o prove that ap‘@q:‘%Q(GP—QW“S*P)

—g+1 holds for any p=N, p=1 and for some

g+1=N and g¢=2, apply the mathematical in-

duction to the equation @, ,., by the number p.

1) For p=1. there are q parallel lines and it
separates the plane as g+l regions. 5o,
ay.,+1 =g+ 1, it holds.

2} Assume a, ..y holds: it has p sets of g+l
parallel lines{refer the equation 7 and (Fig. 5))
{hypothesis step’.

3) For p+l, by adding one sct of g+l parallel
lines, the additional number of separable region
is glplg—1>+2] Therefore, ap1g1 18 ap 41+
glgp—p+2) and is the same as @, 441 Of

the theorem. So, a,;(ﬁl:—%ﬂ(ab—aﬂLS“ B -
g+ lholds for anv p=N and p=1.

4. Therefore a,, holds for any p, geN, p= 1. and
g=2 .
24 2-layered Multi-Level Neural  Network
MLGR(Mutti-Level Grading Rule

The 2-laver mudti-level neural network is com-

using

posed of an input layer and an output layer without

hidden layer. Each input has p levels and each

!
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(Fig. 6) Two-layer multi-level neural network

where @ is the weight value between the node
of Xi and Z,. 0; is the threshold value of output node
Zi. X = {xi, Xo. X3, . . . Xph Xl = p 2 € {21, zo,
2 .. Zobh 120 5 g for any 1<i<n and 1=)=m.

Therefore, the output of 7 13

1 _
14 expl “‘(Z?H”‘X,.Jr' 8]

7=

4

When |7} = 2, let Z; = 1/2 then

M?/|)‘{|+?’U,2X2+ e ope Z{r’j,‘X,‘ S l/li,',}X,,":’“ 6]"_*0, (6}

K2 fwn W o W (X
t, Wy Wy v Wy vt W | | X
= o : : : : (73
5; 'L(’ji u—’jg u’ﬁ’ Wy, 1’(5
Hm VWl W Wy T W) Xx
or
Wy [ Wy Wy ot Wy T Wi X
Wy Wy Wap v Wy T Wite-1) X,
I | : : : : :
| W | Xilwy wp Wi Wiin-1 | | X,
Lo o : L P
u‘mm‘ “"mi u‘m}: MWy CH NILM*]Ii ‘»‘Xin”lﬂ
(9;'1
&
. (8)
X. | 8
4,
Let us extend this cquation to {Zi G, & -
{172, 372q, .., (Zk 12, .., (2g-1)72g} and Zy
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where k - 1, 2 . q.

gi-levels in the jw output by

MILGR{refer the (Fig. D). Let us consider the border

of each level, Le, Zx = kg, in g levels to find out
the weight space separability (the capacity of a
neural network), then

1
Zj,é = i
l*expi—(g%’;pXi'"ﬁf)]
- k (9)
4q;
g, Wy Wy Wy Wi 1 X
8, Woy Wy v Wy Woy 'Xv
S| v : O I PPN 2
9}; Wy Wp - Wy Uigy X,‘ Qjﬁk
gm i\wml Wy =7 Uy wmn] \XM
(10

where 1<k<g;,—1.

25 The Number of Functions in p input levels and g
output levels
Multi-valued function f with domain X = {x;, x,

Xy o x) (Xl =p ox= 2%;1 , 1=<i=p, and range
Z oz, ooz .z, | Z] =g 2= 212;—1 and

1</=q, for some integer p and ¢, is as follows:

Folen 2o, x5, 000" — {z1,20, 25, ..., 2,),

f(X},XQ,...,Xn}=Z, (11)

Here, X" denotes the n-fold cartesian product of the
sef X with itself,

Let the set X is the set of all possible inputs(the
combination of n inputs with p levels for each of
them) as foliows:

X= {(Xlo Xy, X LX) XE {xl,xz‘---. Xy oo ,xp},

where x,:—%;—l«, T=<jsp, l<i<n}

(12)
[ X|==p". (13)

The set Z is the set of all possible outputsithe
combination of q levels output for each p” inputs).

Z = {<ZLJZZ="'7ZI""'!Zﬂ")lzzEZ}ylzl = q})",
F = {flf: X—>Z}, (14
|Ft=g" (15)

If the system has m outputs, then the function of
n inputs and m outputs is as follows:
T X" = 27,

where X= {x,x3,...,x0,}, Z={2,2y, ..., 2,}

0<xi<1land @ < z < I (16)

T={3T:X— Z"). (1n
The total number of possible function is

1= =g (18)

So, the total number of functions by combination of p
levels in 1 inputs and ¢ levels in m outputs is ¢ ™"

A Boolean function is a function f with domain
{(F,T} and range {F,T}, for some integer n and m as
follows:

fAFRTY - (F, T}, (19)

where {F,T}" denotes the n-fold cartesian product of
the set {F, 7} with itself. When a problem has n
input variables and m output variables, then there
L fl=2m

combination of inputs and outputs. <Table 1> shows

are " kinds of functions (rules) by their

<Table 1> The possible combinatorial functions(rutes) for 2 inputs with binary leveis of inputs and oulput

F Inputs The Functions of Outputs 7
No. X Y fy f2 f3 fy £ t £ fs fo fio | fu fr | i | iy | fi5 fis
1 F r F F F F F F F F T T T T T T T T
2 F T F F F F T T T T F F F F T T T T
3 T F F F T T F F T T F F T T F F T T
4 T T F T F T F T F T F T E T F T F T




an esanmple which has owe mputs with binaey levels
and one output with bhinarv levels, and it has 16(-

94y kinds of possible functionstrules).

28 The Separabilty in a d-Dimensional Hyperspace
in General Position

There are C(N, d) homogeneousty lincarly sepa-

rable dichotomies of N points in general position in

Euclidean d-space, where
. o v IN—1
C(N, d) =2 ;‘)( ) (20)

The above ecquation 13 proved by mathematical
induction.[8][11] For all real s and integer k, the

hinomial coefficients comprising (N, d) 18 defined by

(s)_,; s(s— 1)y (s—k+1)
k k! '

Therefore the maximum caphcity of a multi-layer
neural network with N hidden nodes and d-
dimension of input space is CIN, d). Actually the
capacity of this neural network is far less than CIN,
d). The capacity of a simple hinary level perceptron
of an associative network of N nodes has known as
0.138N.[10]

3. The Simulation of an Example

3.1 Model 1(3)-1(2)

The model expression "1(3)-1(2)" means that the
Core- Net has one input with 3 levels and 1 output
with 2 levels. In this case, the number of all
possible functions with p=3 and g=2 is 8 (= 7).
Substitute p and g into the equation (4), then a..
is 6. There are 6 regions, which are separable with
3 lines derived from the eqguation (10), as shown in
(Fig. 7). Thus, there are two functions which are
not implementable with this 13)-1{Z} neural network
out of R combinatorial possible functions. The

simulation results are shown on section 3.2.

32 The Simulation Results of model 1(3-1(2)
The model has heen tested with an input and an

agrput which have nult - levels wirh hackpropagation
algorithm in neural network. The effective ranges
of all the level values had been set to 1096 of the
maximum Tange Amao the lcaming rate eta was
0.9; the momentum factor alpha was 0.7, the maxi
mum iteration number was 32767, The system was
run 10 times with variable random initiali weight
value sets in cach 8 possible input combinations
(fanctions). For example, in the case of function
1{F), ic, output of F. F, T, the training (input,
output} pairs were {0.17, 0.25), (0.50, 0.25}, and (083,
0.75) and the generated output results were (0.17,
0.128825), {050, 0.363400), and (0.83, 0.687856). The
simulation results of 1(3}-1(2) model are shown in
<Table 2>. The first column of <Table 2> 1s the
function number. The second one is the test
number with the number of iteration. The third
one is the generated output. The fourth cne is the
number of correct outputs out of three datallevels).
The fifth one is the weight value. The sixth one
s the thetalhiaz). Finallv, the seventh one is the
generalized error.

In <Table 2> the simulation of functions Fo
through F: were also run 10 times ecach, but they
were not converged to the 10% of effective range of
error and reached the maximum iteration. Thus, the
generated outputs, @’s, Theta’s, and Err's are same
in each run. In the results of functions 3 and 6 (Fj,
Fel, the number of correct outputs were only 2 out
of 3 samples in each other. This means that the
two  functions are not implementable with this
1{3)-1(2) neural network system and the Errs are
hig. Another run of this svstem with the effective
range of 100% and with the number of maximum
iteration of 1,000,000 shows that only the simulation
of these two functions (Fy, Fe) are reached the maxi
mum iteration number. This confirms that these func-
tions are not implementable with this 1(3)-1(2) model.

If the effective range is set wide, the number of
iteration is small to converge and the weight values
are located near the separate lines (hyper-planes in

multi-dimensional weight space) but inside of them.



{Table 2> Simulation results of model 1(3)-1(2)

Fune. her Generated Outputs i of Thets Fir ’
# er. Sample 1 Sample 2 Sample 3| Com. ¢ - (< 10
1.33 0.274809 0.250890 ().228086 3 ~().368967 -0.908853 0.1895258
23 0.270739 0.271044 0.272351 3 (.012226 -0.992914 0.962583
305 0.271060 0.250243 0.230520 3 -0.324220 -0.935206 0.183204
4.4 0.268320 0.246312 0.225552 3 -00.345690 -0.945534 0.42889
E D16 0.274873 0.201000 0.228640 3 -{.368592 -0.908527 (.185865
" 6 4 0.263372 (1.252684 0.242287 3 (0167014 -1.000591 (0.200872
704 0,253336 0.247265 0.236017 3 -00.175870) -1.025320 0.208444
34 0.264380 0,246421 0,220302 3 ~(0,283422 0.976081 0.337266
9. 5 0.271981 0.250269 0.229744 3 ~-(0L.337773 -0.928290 0.197172
10, 22 0274839 0.2500989 0.228557 3 -(0.369443 -0.908621 0.190123
F 32767 (0.128825 0.363400 .687856 3 4002664 -2.586968 5.39767
Fy 32767 0.420079 0.418220 0.416362 2 ~0.022917 -0.318629 29,3343
Fy 32767 0.313221 0.636600 0870612 3 4.037639 -1.458180 535768
Fs 32757 06867 .363299 0.129388 3 -4.037638 1458179 2.39768
Fs 32767 0579921 0.581730 0.58363R 2 0.022016 0.318629 29.3043
o 32767 0871175 0.636600 0.312144 3 -4.052664 2.586968 5.39768
L 4 0.736800 0744835 0.752703 3 0.125573 1.008467 0.1614
2.41 0725385 0.749006 0771233 3 (.360965 (.910328 0.186578
315 0.725210 0.748873 0.771142 3 0.366507 0.900358 0.187346
4. 13 0.725048 0.749032 0.771583 3 0.371475 0.907721 0.19129%
F 5. 4 0.729446 0.748474 0.768490 3 0.312019 0.933798 0.360193
# 6, 30 0.725330 0.743005 0.771266 3 (1.366511 0.910060 0.18713
7.3 0.725301 0.749007 0771312 3 0367267 0.905688 0187858
8 20 0.726174 0.745006 0771423 3 0.369173 0.908734 0189473
9. 11 0.725151 0.750073 0.773442 3 0.386572 0.905717 0.199001
10, 4 (0,733050 0.749251 0764785 3 0.253442 0.967903 0.286947
When the effective range is set narrow (g, 10%), = 8
the trained weight values are located near the center *n7 2 At
RS -
of the regions. (Fig. 7) graphically shows the draw- p5 ”\Q‘\\k\\\;ow
. . o . d pE hd
ing of the execution results of the first runs i each 4 2 pl] P 3
R . . . 4,
of & functions, as shown in the <Table 2> e -z 12‘ Rz
(Fig. 7) shows that there is only one point in -3 ~_

each regions except the point of p3 and pb, which

are the outputs of the run those are not converged

and the results are not correct.

8l = -1/6 @

8: - -38 w

By = -56 w
pl=(-0.368967, -0.908853)
p2=(4.052664, -2.586968)
p3=(-0.022917, -0.318629)
pd=(4.037639, - 1.458180)
p5=(-4.03763%8, 1.458179)
p6=(0.022916, 0.318629)
p7=(-4.052664, 2586968}
p3=(0.125573, 1.008467)

(Fig. 7) 1{3)-1(2), one input with 3 levels
and 1 output with 2 levels

4, Conclusion

This paper suggests a theorem ahout the eguation
to find out the capacity(number of separable regions)
of the Core-Net:
network (refer to the equation 4). The equation has
been applied to an example of model 1(3)-1(2): one
input with 3 levels and 1 output with two levels.
This model has been run with an artificial neural

network using backpropagation algorithm and the

two layered multilevel neural

results are shown in <Table 2>,

The number of combinatorial functions in this



model 1s ¥ as described in section 2.3 and moscetion
3.1 The graph in (Fig. 7) shows that there are 6
separable  regions(Rl through R6 in  clockwise).
Therefore, there are two tunctions which are not
implementable. These points p3 and pb, which are
not converged, are located In wrong positions in the
graph and their outputs are incorrect as shown in
<Table 2>. From this output results, the un-
implementable  (reached  the maximum  iteration)
functions are exactly matched to {Fig. 7) as de-

scribed in section 2.3, and fo the thearem @, ,.

The weight values of the simulation are located
inside the separabie regions as shown in the figure,
On the other hand, the welght points of the two
un-implementable functions are located m the wrong
place and have no meaning.

This Core-Net conld be applied o the nmulu
layered neural network. The Core-Net is very
helpful to solve an optimized neural nctwork pro-
blems such as optimum nodes, links, and the op-
tmum number of training data. The input and output
levels can be interpreted as lnguistic symbols for

the process of approximate reasoning too.
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