• 제목/요약/키워드: Neural Model

검색결과 5,505건 처리시간 0.033초

피에조콘을 이용한 선행압밀하중 결정 신경망 모델의 초기 연결강도 의존성 개선 (Improvement of Initial Weight Dependency of the Neural Network Model for Determination of Preconsolidation Pressure from Piezocone Test Result)

  • 박솔지;주노아;박현일;김영상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.456-463
    • /
    • 2009
  • The preconsolidation pressure has been commonly determined by oedometer test. However, it can also be determined by in-situ test, such as piezocone test with theoretical and(or) empirical correlations. Recently, Neural Network(NN) theory was applied and some models were proposed to estimate the preconsolidation pressure or OCR. However, since the optimization process of synaptic weights of NN model is dependent on the initial synaptic weights, NN models which are trained with different initial weights can't avoid the variability on prediction result for new database even though they have same structure and use same transfer function. In this study, Committee Neural Network(CNN) model is proposed to improve the initial weight dependency of multi-layered neural network model on the prediction of preconsolidation pressure of soft clay from piezocone test result. It was found that even though the NN model has the optimized structure for given training data set, it still has the initial weight dependency, while the proposed CNN model can improve the initial weight dependency of the NN model and provide a consistent and precise inference result than existing NN models.

  • PDF

인공 지진 생성에서 Fourier 진폭 스펙트럼과 변수 추정을 위한 신경망 모델의 개발 (Development of Neural-Networks-based Model for the Fourier Amplitude Spectrum and Parameter Identification in the Generation of an Artificial Earthquake)

  • 조빈아;이승창;한상환;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.439-446
    • /
    • 1998
  • One of the most important roles in the nonlinear dynamic structural analysis is to select a proper ground excitation, which dominates the response of a structure. Because of the lack of recorded accelerograms in Korea, a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms is necessarily required. If all information is not available at site, the information from other sites with similar features can be used by the procedure of seismic hazard analysis. Eliopoulos and Wen identified the parameters of the ground motion model by the empirical relations or expressions developed by Trifunac and Lee. Because the relations used in the parameter identification are largely empirical, it is required to apply the artificial neural networks instead of the empirical model. Additionally, neural networks have the advantage of the empirical model that it can continuously re-train the new recorded data, so that it can adapt to the change of the enormous data. Based on the redefined traditional processes, three neural-networks-based models (FAS_NN, PSD_NN and INT_NN) are proposed to individually substitute the Fourier amplitude spectrum, the parameter identification of power spectral density function and intensity function. The paper describes the first half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS).

  • PDF

Forecasting performance and determinants of household expenditure on fruits and vegetables using an artificial neural network model

  • Kim, Kyoung Jin;Mun, Hong Sung;Chang, Jae Bong
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.769-782
    • /
    • 2020
  • Interest in fruit and vegetables has increased due to changes in consumer consumption patterns, socioeconomic status, and family structure. This study determined the factors influencing the demand for fruit and vegetables (strawberries, paprika, tomatoes and cherry tomatoes) using a panel of Rural Development Administration household-level purchases from 2010 to 2018 and compared the ability to the prediction performance. An artificial neural network model was constructed, linking household characteristics with final food expenditure. Comparing the analysis results of the artificial neural network with the results of the panel model showed that the artificial neural network accurately predicted the pattern of the consumer panel data rather than the fixed effect model. In addition, the prediction for strawberries was found to be heavily affected by the number of families, retail places and income, while the prediction for paprika was largely affected by income, age and retail conditions. In the case of the prediction for tomatoes, they were greatly affected by age, income and place of purchase, and the prediction for cherry tomatoes was found to be affected by age, number of families and retail conditions. Therefore, a more accurate analysis of the consumer consumption pattern was possible through the artificial neural network model, which could be used as basic data for decision making.

Intelligent System Predictor using Virtual Neural Predictive Model

  • 박상민
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 The Korea Society for Simulation 98 춘계학술대회 논문집
    • /
    • pp.101-105
    • /
    • 1998
  • A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.

  • PDF

하계의 일 최고 오존농도 예측을 위한 신경망모델의 개발 (Development of Neural Network Model for Pridiction of Daily Maximum Ozone Concentration in Summer)

  • 김용국;이종범
    • 한국대기환경학회지
    • /
    • 제10권4호
    • /
    • pp.224-232
    • /
    • 1994
  • A new neural network model has been developed to predict short-term air pollution concentration. In addition, a multiple regression model widely used in statistical analysis was tested. These models were applied for prediction of daily maximum ozone concentration in Seoul during the summer season of 1991. The time periods between May and September 1989 and 1990 were utilized to train set of learning patterns in neural network model, and to estimate multiple regression model. To evaluate the results of the different models, several Performance indices were used. The results indicated that the multiple regression model tended to underpredict the daily maximum ozone concentration with small r$^{2}$(0.38). Also, large errors were found in this model; 21.1 ppb for RMSE, 0.324 for NMSE, and -0.164 for MRE. On the other hand, the results obtained from the neural network model were very promising. Thus, we can know that this model has a prominent efficiency in the adaptive control for the non-linear multi- variable systems such as photochemical oxidants. Also, when the recent new information was added in the neural network model, prediction accuracy was increased. From the new model, the values of RMSE, NMSE and r$^{2}$ were 13.2ppb, 0.089, 0.003 and 0.55 respectively.

  • PDF

타이어 힘 추정을 위한 파라미터 최적화 파제카 모델과 인공 신경망 모델 간의 비교 연구 (A Comparative Study between the Parameter-Optimized Pacejka Model and Artificial Neural Network Model for Tire Force Estimation)

  • 차현수;김자유;이경수;박재용
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.33-38
    • /
    • 2021
  • This paper presents a comparative study between the parameter-optimized Pacejka model and artificial neural network model for the tire force estimation. The two different approaches are investigated and compared in this study. First, offline optimization is conducted based on Pacejka Magic Formula model to determine the proper parameter set for the minimization of tire force error between the model and test data set. Second, deep neural network model is used to fit the model to the tire test data set. The actual tire forces are measured using MTS Flat-Track test platform and the measurements are used as the reference tire data set. The focus of this study is on the applicability of machine learning technique to tire force estimation. It is shown via the regression results that the deep neural network model is more effective in describing the tire force than the parameter-optimized Pacejka model.

신경망 이론을 이용한 통행발생 모형연구 (선형/비선형 회귀모형과의 비교) (Trip Generation Model Using Backpropagation Neural Networks in Comparison with linear/nonlinear Regression Analysis)

  • 장수은;김대현;임강원
    • 대한교통학회지
    • /
    • 제18권4호
    • /
    • pp.95-105
    • /
    • 2000
  • 본 연구의 목적은 기존의 대표적 통행발생모형인 회귀모형과 신경망 이론에 의한 통행발생모형을 비교.분석하여 통행발생모형에 대한 새로운 방법을 제시하고자 하는 것이다. 이를 위해 모형의 검정력과 안정성을 현재적 설명력과 장래 예측력의 결합으로 전제하고, 시나리오에 따른 모형의 검정력 변화를 통한 안정성 평가를 수행하였다. 연구결과 역전파 신경망 모형(Backpropagation Neural Networks)은 회귀모형의 검정력과 안정성을 상회하는 우수한 결과를 보여 주었으며, 이는 향후 통행발생 모형으로 역전파 신경망 모형의 적용 가능성을 의미하는 것으로 해석된다. 특히 복잡해진 교통현상과 다양한 수집자료를 고려할 때 교통분야에서의 신경망 모형의 적용은 더욱 확대될 전망이다.

  • PDF

의사결정나무를 활용한 신경망 모형의 입력특성 선택: 주택가격 추정 사례 (Decision Tree-Based Feature-Selective Neural Network Model: Case of House Price Estimation)

  • 윤한성
    • 디지털산업정보학회논문지
    • /
    • 제19권1호
    • /
    • pp.109-118
    • /
    • 2023
  • Data-based analysis methods have become used more for estimating or predicting housing prices, and neural network models and decision trees in the field of big data are also widely used more and more. Neural network models are often evaluated to be superior to existing statistical models in terms of estimation or prediction accuracy. However, there is ambiguity in determining the input feature of the input layer of the neural network model, that is, the type and number of input features, and decision trees are sometimes used to overcome these disadvantages. In this paper, we evaluate the existing methods of using decision trees and propose the method of using decision trees to prioritize input feature selection in neural network models. This can be a complementary or combined analysis method of the neural network model and decision tree, and the validity was confirmed by applying the proposed method to house price estimation. Through several comparisons, it has been summarized that the selection of appropriate input characteristics according to priority can increase the estimation power of the model.

아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구 (A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market)

  • 남영우;이정민
    • 한국건설관리학회논문집
    • /
    • 제7권2호
    • /
    • pp.162-170
    • /
    • 2006
  • 부동산분야에서 전통적인 예측방법과 비교하여 보다 예측력을 높일 수 있는 방법을 찾으려 한다. 이에 앞서 신경망 모형의 적용가능성을 살펴보고, 기존의 연구를 토대로 한 신경망 이론의 정의, 구조, 장단점 등을 살펴본다. 구체적인 적용가능성을 확인하기 위하여 동일 데이터로 회귀분석과 신경망분석을 통한 모형을 구축하고, 예측정확도 측면에서 신경망모형의 적용 가능성을 검토한다. 부동산학에서 기존에 회귀분석에 치우쳐 있던 연구방법을 신경망분석까지 확장하고, 특히 예측정확도 측면에서 우수성이 검증되고 있는 신경망모형에 대한 연구를 활성화 하고자 하는데 본 연구의 목적이 있다. 연구방법으로는 분양가격에 영향을 주는 거시경제변수를 모형화 한다. 그 모형설정 후 회귀분석과 신경망분석으로 결과를 비교하여 보다 예측 정확도가 높은 것을 찾는다. 그 결과 신경망모형의 예측정확도가 상당히 높게 나타났다.

신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II) (Design of Neural-Network Based Autopilot Control System(II))

  • 곽문규;서상현
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.19-26
    • /
    • 1997
  • 본 논문에서는 신경망을 이용한 선박자동조타장치의 개발에 관한 연구결과를 소개한다. 앞의 논문에서 소개된 Back-Propagation 알고리즘을 이용하여 선박의 자동운항을 위한 자동제어방법을 개발하였으며 그 결과 기준모델추구신경망제어기와 순간최적제어기를 설계하였다. 기준모델추구신경망제어기는 선수각과 선수각속도가 주어진 기준모델을 추구하도록 타각을 제어하도록 하였으며, 순간최적제어기는 현 상태에서 다음상태로의 천이를 최적화하도록 하였다. 신경망에 근거한 이들 제어기법을 간단한 선박조종수치모델에 적용한 결과 그 효용성을 확인할 수 있었다.

  • PDF