• Title/Summary/Keyword: Neumann boundary condition

Search Result 62, Processing Time 0.025 seconds

Development of A Three-Dimensional Euler Solver for Analysis of Contraction Flow (수축부 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.175-181
    • /
    • 1995
  • Three-Dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for the various contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreements.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

3-dimensional simulation of field emitter array (Field emitter array의 3차원 시뮬레이션)

  • 정재훈;김영훈;이병호;이종덕
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.100-105
    • /
    • 1997
  • 3-dimensional finite element mehtod (FEM) elecrical field analysis was performed to obtain electric fields on a field emission display (FED) tip in an array form. Because, unlike a single tip structure, there is no azimuthal symmetry for a tip aary, 3D analysis is necessary. To reduce memory requriement the simulatio was performed by applying the neumann boundary condition to the intermediate plane between tips to take the effect of the array on the electric field into account and corresponding current was calculated. To verify our algorithm, comparison between simulation resutls and experimental data from another paper was made and the difference was discussed.

  • PDF

3-dimensional Electric Field Analysis for Field Emission Devices (전계방출소자의 3차원 전계해석)

  • Kim, Yeong-Hoon;Jung, Jae-Hoon;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.662-664
    • /
    • 1997
  • 3-dimensional finite element method(FEM) electrical field analysis was performed to obtain electric fields on a field emission device tip in an array form. The simulation was performed by applying the Neumann boundary condition to the intermediate plane between tips. To verify our algorithm, comparison between simulation results and experimental data from another paper was made and the difference was discussed. Finally, analysis on triode structure was performed.

  • PDF

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

Global Attractivity and Oscillations in a Nonlinear Impulsive Parabolic Equation with Delay

  • Wang, Xiao;Li, Zhixiang
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.593-611
    • /
    • 2008
  • Global attractivity and oscillatory behavior of the following nonlinear impulsive parabolic differential equation which is a general form of many population models $$\array{\{{{\frac {{\partial}u(t,x)}{{\partial}t}=\Delta}u(t,x)-{\delta}u(t,x)+f(u(t-\tau,x)),\;t{\neq}t_k,\\u(t^+_k,x)-u(t_k,x)=g_k(u(t_k,x)),\;k{\in}I_\infty,}\;\;\;\;\;\;\;\;(*)$$ are considered. Some new sufficient conditions for global attractivity and oscillation of the solutions of (*) with Neumann boundary condition are established. These results no only are true but also improve and complement existing results for (*) without diffusion or impulses. Moreover, when these results are applied to the Nicholson's blowflies model and the model of Hematopoiesis, some new results are obtained.

Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method (고차경계요소법에 의한 선체주위 유동해석)

  • Sa-Y. Hong;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.42-57
    • /
    • 1995
  • An efficient and accurate scheme has been constructed by taking advantages of the hi-quadratic spline scheme and the higher-order boundary element method selectively depending on computation domains. Boundary surfaces are represented by 8-node boundary elements to describe curved surfaces of a ship and its neighboring free surface more accurately. The variation of the velocity potential complies with the characteristics of the 8-node element on the body surface. But on the free surface, it is assumed to follow that of the hi-quadratic spline scheme. By which, the free surface solution is free from numerical damping and has better numerical dispersion property. As numerical examples, steady and unsteady Neumann-Kelvin problems are considered. Numerical results for a submerged spheroid, Series 60($C_B=0.6$) and a modified support the proposed method. Finally, a new upstream radiation condition is derived using a wave equation operator in order to deal with problems for subcritical reduced frequency. The relevance of this operator has been confirmed in the case of unsteady Kelvin source potential.

  • PDF

Time Domain Analysis of Ship Motion in Waves Using Finite Element Method (유한요소법을 이용한 파랑 중 선박운동의 시간영역 해석기법 개발)

  • Nam, Bo-Woo;Sung, Hong-Gun;Hong, Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.

Poly-crystalline Silicon Thin Film Transistor: a Two-dimensional Threshold Voltage Analysis using Green's Function Approach

  • Sehgal, Amit;Mangla, Tina;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.4
    • /
    • pp.287-298
    • /
    • 2007
  • A two-dimensional treatment of the potential distribution under the depletion approximation is presented for poly-crystalline silicon thin film transistors. Green's function approach is adopted to solve the two-dimensional Poisson's equation. The solution for the potential distribution is derived using Neumann's boundary condition at the silicon-silicon di-oxide interface. The developed model gives insight into device behavior due to the effects of traps and grain-boundaries. Also short-channel effects and drain induced barrier lowering effects are incorporated in the model. The potential distribution and electric field variation with various device parameters is shown. An analysis of threshold voltage is also presented. The results obtained show good agreement with simulated results and numerical modeling based on the finite difference method, thus demonstrating the validity of our model.

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF