• Title/Summary/Keyword: Networks

Search Result 22,394, Processing Time 0.044 seconds

Priority Based Interface Selection for Overlaying Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1009-1017
    • /
    • 2010
  • Offering of different attractive opportunities by different wireless technologies trends the convergence of heterogeneous networks for the future wireless communication system. To make a seamless handover among the heterogeneous networks, the optimization of the power consumption, and optimal selection of interface are the challenging issues. The access of multi interfaces simultaneously reduces the handover latency and data loss in heterogeneous handover. The mobile node (MN) maintains one interface connection while other interface is used for handover process. However, it causes much battery power consumption. In this paper we propose an efficient interface selection scheme including interface selection algorithms, interface selection procedures considering battery power consumption and user mobility with other existing parameters for overlaying networks. We also propose a priority based network selection scheme according to the service types. MN‘s battery power level, provision of QoS/QoE and our proposed priority parameters are considered as more important parameters for our interface selection algorithm. The performances of the proposed scheme are verified using numerical analysis.

Performance Analysis of Dynamic Spectrum Allocation in Heterogeneous Wireless Networks

  • Ha, Jeoung-Lak;Kim, Jin-Up;Kim, Sang-Ha
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.292-301
    • /
    • 2010
  • Increasing convergence among heterogeneous radio networks is expected to be a key feature of future ubiquitous services. The convergence of radio networks in combination with dynamic spectrum allocation (DSA) could be a beneficial means to solve the growing demand for radio spectrum. DSA might enhance the spectrum utilization of involved radio networks to comply with user requirements for high-quality multimedia services. This paper proposes a simple spectrum allocation algorithm and presents an analytical model of dynamic spectrum resource allocation between two networks using a 4-D Markov chain. We argue that there may exist a break-even point for choosing whether or not to adopt DSA in a system. We point out certain circumstances where DSA is not a viable alternative. We also discuss the performance of DSA against the degree of resource sharing using the proposed analytical model and simulations. The presented analytical model is not restricted to DSA, and can be applied to a general resource sharing study.

The Influence of Weight Adjusting Method and the Number of Hidden Layer있s Node on Neural Network있s Performance (인공 신경망의 학습에 있어 가중치 변화방법과 은닉층의 노드수가 예측정확성에 미치는 영향)

  • 김진백;김유일
    • The Journal of Information Systems
    • /
    • v.9 no.1
    • /
    • pp.27-44
    • /
    • 2000
  • The structure of neural networks is represented by a weighted directed graph with nodes representing units and links representing connections. Each link is assigned a numerical value representing the weight of the connection. In learning process, the values of weights are adjusted by errors. Following experiment results, the interval of adjusting weights, that is, epoch size influenced neural networks' performance. As epoch size is larger than a certain size, neural networks'performance decreased drastically. And the number of hidden layer's node also influenced neural networks'performance. The networks'performance decreased as hidden layers have more nodes and then increased at some number of hidden layer's node. So, in implementing of neural networks the epoch size and the number of hidden layer's node should be decided by systematic methods, not empirical or heuristic methods.

  • PDF

Exploratory Study of Causal Relationship between Social Capital and Performance on Strategic Networks: Systems Thinking Analysis (전략적 네트워크에서 사회적 자본과 성과의 인과 관계에 관한 탐색적 연구: 시스템 사고를 통한 분석)

  • Kim, Dong-Seok;Chung, Chang-Kwon
    • Korean System Dynamics Review
    • /
    • v.17 no.1
    • /
    • pp.41-64
    • /
    • 2016
  • The purpose of this paper is to explore causal relationship between social capital and firm's performance using systems thinking analysis. In strategic networks, the relationship between the members is an important factor affecting the performance. For this reason, we study relationship between social capital and firm's performance on strategic networks. The results show: Firstly, as presented in the existing research, trust and performance are positive relationship(+) and verify the entire system on strategic networks. Secondly, due to exclusiveness and embeddedness of social capital, there is nonlinear relationship between social capital and the firm's performance. Thirdly, the key factor of firm's performance on strategic networks verify relationship dependency and trust.

Design of Adaptive Neural Networks Based Path Following Controller Under Vehicle Parameter Variations (차량 파라미터 변화에 강건한 적응형 신경회로망 기반 경로추종제어기)

  • Shin, Dong Ho
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Adaptive neural networks based lateral controller is presented to guarantee path following performance for vehicle lane keeping in the presence of parameter time-varying characteristics of the vehicle lateral dynamics due to the road surface condition, load distribution, tire pressure and so on. The proposed adaptive controller could compensate vehicle lateral dynamics deviated from nominal dynamics resulting from parameter variations by incorporating it with neural networks that have the ability to approximate any given nonlinear function by adjusting weighting matrices. The controller is derived by using Lyapunov-based approach, which provides adaptive update rules for weighting matrices of neural networks. To show the superiority of the presented adaptive neural networks controller, the simulation results are given while comparing with backstepping controller chosen as the baseline controller. According to the simulation results, it is shown that the proposed controller can effectively keep the vehicle tracking the pre-given trajectory in high velocity and curvature with much accuracy under parameter variations.

Analysis on the definition and typology of library networks (도서관 네트워크의 정의의 분석과 유형별 특성)

  • 박준식
    • Journal of Korean Library and Information Science Society
    • /
    • v.12
    • /
    • pp.1-33
    • /
    • 1985
  • This study has been aimed to analyze the following three points which are believed to be the most important in establishing efficient library networks. The writers have done the research into the literature and references concerning the networks of library, as they are considered crucial functions in cooperative administration between the libraries. The following are the findings from the survey: 1) The established networks in foreign countries have been compared with those of Korea, basing upon the data and present situations in both areas and the definition and agreed viewpoint of the networks are presented. 2) The relations between the existing Library system and Consortia were clarified in view of the current trend, thus showing the scope and integral aspects of them. 3) Finally, we have classified the types of network into four categories, such as search service network, customized service network, service center/network and state local networks, and made through analysis of the character, organization and management of each realm.

  • PDF

Tuning Learning Rate in Neural Network Using Fuzzy Model (퍼지 모델을 이용한 신경망의 학습률 조정)

  • 라혁주;서재용;김성주;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1239-1242
    • /
    • 2003
  • The neural networks are a famous model to learn the nonlinear function or nonlinear system. The main point of neural network is that the difference actual output from desired output is used to update weights. Usually, the gradient descent method is used for the learning process. On training process, if learning rate is too large, neural networks hardly guarantee convergence of neural networks. On the other hand, if learning rate is too small, the training spends much time. Therefore, one major problem in use of neural networks are to decrease the teaming time while neural networks are guaranteed convergence. In this paper, we suggest the model of fuzzy logic to neural networks to calibrate learning rate. This method is to tune learning rate dynamically according to error and demonstrates the optimization of training.

  • PDF

COSMOS: A Middleware for Integrated Data Processing over Heterogeneous Sensor Networks

  • Kim, Ma-Rie;Lee, Jun-Wook;Lee, Yong-Joon;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.696-706
    • /
    • 2008
  • With the increasing need for intelligent environment monitoring applications and the decreasing cost of manufacturing sensor devices, it is likely that a wide variety of sensor networks will be deployed in the near future. In this environment, the way to access heterogeneous sensor networks and the way to integrate various sensor data are very important. This paper proposes the common system for middleware of sensor networks (COSMOS), which provides integrated data processing over multiple heterogeneous sensor networks based on sensor network abstraction called the sensor network common interface. Specifically, this paper introduces the sensor network common interface which defines a standardized communication protocol and message formats used between the COSMOS and sensor networks.

  • PDF

A Study on the Inverse Calibration of Industrial Robot Using Neural Networks (신경회로망을 이용한 산업용 로봇의 역보정에 관한연구)

  • 서운학
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.108-115
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$3 to $\pm$0.1.

  • PDF

Inference of Gene Regulatory Networks via Boolean Networks Using Regression Coefficients

  • Kim, Ha-Seong;Choi, Ho-Sik;Lee, Jae-K.;Park, Tae-Sung
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.339-343
    • /
    • 2005
  • Boolean networks(BN) construction is one of the commonly used methods for building gene networks from time series microarray data. However, BN has two major drawbacks. First, it requires heavy computing times. Second, the binary transformation of the microarray data may cause a loss of information. This paper propose two methods using liner regression to construct gene regulatory networks. The first proposed method uses regression based BN variable selection method, which reduces the computing time significantly in the BN construction. The second method is the regression based network method that can flexibly incorporate the interaction of the genes using continuous gene expression data. We construct the network structure from the simulated data to compare the computing times between Boolean networks and the proposed method. The regression based network method is evaluated using a microarray data of cell cycle in Caulobacter crescentus.

  • PDF