
696 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

With the increasing need for intelligent environment
monitoring applications and the decreasing cost of
manufacturing sensor devices, it is likely that a wide
variety of sensor networks will be deployed in the near
future. In this environment, the way to access
heterogeneous sensor networks and the way to integrate
various sensor data are very important. This paper
proposes the common system for middleware of sensor
networks (COSMOS), which provides integrated data
processing over multiple heterogeneous sensor networks
based on sensor network abstraction called the sensor
network common interface. Specifically, this paper
introduces the sensor network common interface which
defines a standardized communication protocol and
message formats used between the COSMOS and sensor
networks.

Keywords: Sensor network abstraction, RFID,
standardized interface, sensor network simulator, sensor
network common interface.

Manuscript received Jan. 30, 2008; revised Aug. 4, 2008; accepted Aug. 22, 2008.
This work was supported by the IT R&D program of MKE/IITA [2006-S-022-01,

Development of USN Middleware Platform Technology] and by a grant (#07KLSGC02)
from Cutting-Edge Urban Development–Korean Land Spatialization Research Project funded
by Ministry of Construction & Transportation of Korean government.

The fourth author was supported by the Ministry of Knowledge Economy, Rep. of Korea,
under the ITRC (Information Technology Research Center) support program supervised by the
IITA (Institute of Information Technology Advancement) (IITA-2008-C1090-0801-0016).

Marie Kim (phone: + 82 42 860 1590, email: mariekim@etri.re.kr), Jun Wook Lee (email:
junux@etri.re.kr), Yong Joon Lee (email: yjl@etri.re.kr) are with the IT Convergence
Technology Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Jae-Cheol Ryou (email: jcryou@home.cnu.ac.kr) is with the Department of Computer
Science, Chungnam National University, Daejeon, Rep. of Korea.

I. Introduction

Many studies on sensor networks have focused on routing
within a sensor network [1], [2], energy conservation [2], in-
network query processing [3], and so on. Usually, these kinds
of studies do not pay attention to the heterogeneity among
sensor networks. They focus on specific issues, such as routing,
query optimization, and energy conservation under the
assumption that all kinds of sensor networks are homogeneous.
In this context, those studies are theoretical rather than practical.

Recently, with the increasing prevalence of web services,
studies about the sensor web [4] or global sensor network
(GSN) [5] have been actively progressing. The goal of these
studies is the development of a web which is composed of
accessible sensors. In the Open Geospatial Consortium [4], the
relevant languages and interfaces are standardized and verified
by implementation.

The common system for middleware of sensor networks
(COSMOS) [6] is a common application platform over
multiple heterogeneous sensor networks. The COSMOS is
designed to support real field applications that interact with the
environment without human intervention. The COSMOS
provides sensor network abstraction (sensor network common
interface), query optimization, integration of data from various
sensors, sensor network monitoring, and intelligent sensor data
processing, such as event handling, sensor data mining [7], and
context information processing. The COSMOS handles both
sensor networks and RFID readers. It is a ubiquitous sensor
network (USN) middleware, not just a sensor network
middleware. A USN is composed of devices which interact
with an environment by obtaining environmental values
(sense) and/or taking actions toward the environment (actuate).
It includes wireless sensor networks, RFID readers, actuator

COSMOS: A Middleware for Integrated Data
Processing over Heterogeneous Sensor Networks

 Marie Kim, Jun Wook Lee, Yong Joon Lee, and Jae-Cheol Ryou

ETRI Journal, Volume 30, Number 5, October 2008 Marie Kim et al. 697

networks, wired sensor networks, laptop computers, webcams,
speakers, and so on.

The rest of this paper is organized as follows. Section II
compares this study with other relevant studies. The COSMOS
is introduced in section III. Section IV describes the sensor
network common interface. From a sensor network abstraction
view point, the implementation and the performance of
COSMOS are reported in section V.

II. Comparisons with Related Studies

Research regarding sensor networks can be classified
according to the general methodological approach into two
categories: the “bottom-up approach” and the “top-down
approach”. The sensor network services platform (SNSP) [8],
Cougar [9], sensor information networking architecture and
applications (SINA) [10], and COSMOS fall under the
category of the top-down approach. The top-down approach
analyzes functional requirements from an application point of
view. This approach focuses on optimal solutions to process
distributed sensor data and to provide an access interface to the
sensor network from the application standpoint. However, this
is different from the global computing paradigm [11] which
aims at a high throughput using distributed computing
resources. Cougar and SINA attempt to find optimal sensor
data processing methods over sensor networks. SNSP and
COSMOS define an implementation level application interface
to access multiple heterogeneous sensor networks and organize
the sensor network framework systemically according to
services, such as query processing, metadata storage,
application programming interface service, and so on. In
addition, SNSP and COSMOS classify several possible queries
for sensor data into instant queries, continuous queries, and
event queries. Of these studies, only COSMOS considers the
heterogeneity of sensor networks.

SensorML [12], GSN, and IEEE1451 [13] fall under the
category of the bottom-up approach. They model sensors and
sensor networks from the device point of view. IEEE1451
defines a smart transducer interface to access the smart
transducer and uses a transducer electronic data sheet to
manipulate the metadata of transducers. The SensorML models
the processes related to sensors. SensorML models and handles
sensors consistently. GSN defines virtual sensors. A virtual
sensor can be a simple local sensor, a remote sensor, or a sensor
network. A virtual sensor can make a hierarchy to operate
systemically. Basically, all these bottom-up approaches are
based on the self-description method. To join the services,
sensors, actuators, and sensor networks have to publish their
abilities and metadata before performing their functions. This
self-description is used for the resource discovery process and

the sensor data query process. This approach is very flexible
and scalable. However, the main drawback of these bottom-up
approaches is that they are limited in their ability to support
sensor network management and sensor data processing over
multiple heterogeneous sensor networks. This is because this
approach only focuses on device modeling and device access
methods rather than overall data processing and resource
management over multiple sensor networks.

The main functions of the COSMOS can be summarized as
follows:

- It defines the service architecture, including metadata
repository, query processor, sensor network monitor,
security, application interface, sensor network interface, and
so on.

- It defines the sensor network hierarchy from a transducer to
a sensor network (transducer → node → network).

- It defines a consistent application interface (Open API) for
various applications.

- It defines a sensor network common interface to access
heterogeneous sensor networks in a consistent way.

- It provides integrated sensor data processing over multiple
heterogeneous sensor networks.

The COSMOS defines USN service architecture, develops
necessary functional blocks, and defines sensor network
hierarchy. It differs from the approach of a virtual sensor in
SNSP and GSN. In SNSP and GSN, there is no service
architecture or sensor network hierarchy. The virtual sensor can
be a transducer, a sensor node, or a sensor network, and this
concept is a very flexible and scalable instrument. However,
the COSMOS defines the concept of the sensor network. A
transducer is either a sensor or an actuator, and a sensor node
may include one or more transducers, while multiple sensor
nodes comprise a sensor network. This approach is rather
inflexible but more instinctive and more effective to implement
than virtual sensors.

The COSMOS separates sensor networks from applications.
Heterogeneous sensor networks and RFID readers communicate
with the COSMOS via the sensor network common interface.
Non-standardized sensor networks can be connected to the
COSMOS easily via appropriate adaptors. Adaptors are logical
nodes which transform and transfer messages between the
sensor networks and the COSMOS. They can be implemented
on a sink node, a gateway, or in COSMOS. The sensor network
common interface is defined from the user’s point of view. It
does not deal with device specifics.

In addition, the COSMOS monitors sensor networks and
keeps their current status regarding topology, battery level of
nodes, and so on. Integrated sensor data processing is based on
the sensor network metadata and the current status of the
sensor networks.

698 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

Fig. 1. USN service architecture.

USN
application

service

USN
middleware

platform

Sensor
network

Military

surveillance
Disaster

surveillance
 Health

monitoring
Structural
monitoring

 Agricultural
monitoring

Sink node
USN-bridge

Sink node

 M/W M/W M/W

Sink node

City

Home

M/W

Campus

Highway

Outside RFID
reader

RFID
tag

III. USN Middleware (COSMOS)

1. USN Service Architecture

As mentioned in the introduction, USN is not a traditional
network; rather, it is a business scale network. Figure 1 gives an
illustration of USN service architecture, which is a redrawing
based on [14]. USN applications use sensor networks via USN
middleware. Figure 1 shows various types of sensor networks
based on various technologies, such as IEEE 802.11 wireless
sensor networks, ZigBee wireless sensor networks, Bluetooth
wireless sensor networks, RFID readers, mobile RFID, and so
on. The sensor networks provide sensor data or RFID tag data
to the various USN applications. Multiple USN applications
use sensor networks for their own purposes. USN applications
can use specific sensor networks exclusively, or they can share
among other applications if necessary.

In this service architecture, it is very effective to place a
common application platform between the heterogeneous
sensor networks and various applications. The USN
middleware provides common functions required for various
applications. These common functions are derived from
application viewpoints, and they include sensor network access,
sensor network monitoring, metadata storage, and integrated
query processing functions.

2. USN Middleware (COSMOS) Architecture

Figure 2 describes the COSMOS architecture. It consists of

Fig. 2. COSMOS architecture.

Sensor network
abstraction tier

Sensing information
processing tier

USN service tier

Application and service

Sensor network

Sensor network
common interface

manager

Sensor network
monitor

Query
processor

Event
processor

Sensor network
directory serviceOpen API

Context-
aware rule

engine

Application Application

WSN

Adaptor

RFID

Adaptor

Wireline SN

Adaptor

Security
manager

Security
manager

From any
module

Sensing data
mining

processor

three tiers: the sensor network abstraction tier, the sensor
information processing tier, and the USN service tier.

A. Sensor Network Abstraction Tier

The sensor network abstraction tier includes the sensor network
common interface manager, the sensor network monitor, and the
security manager functionalities. The sensor network common
interface manager plays an intermediate role between the
COSMOS and various sensor networks (including RFID readers).
To communicate with the sensor network common interface
manager, the sensor network has to implement an appropriate
adaptor. The security manager controls access to COSMOS
against the sensor networks. The sensor network monitor

ETRI Journal, Volume 30, Number 5, October 2008 Marie Kim et al. 699

x

Fig. 3. Example services that use USN middleware.

GIS engine

Gateway

Gateway

USN middleware

Gateway

DB

Open API

Other USN middleware services
(Query processor, etc.)

Sensor network common interface
manager

Building monitoring
application

Air pollution monitoring
application

Water monitoring application

Waterworks/sewage monitoring
(pressure, height, CO2)

Air pollution monitoring on the
street

(SO2, NO2, CO, O3, CO2)

Building monitoring
(pressure, temperature,

humidity)

provides real-time sensor network monitoring functions.

B. Sensing Information Processing Tier

The sensing information processing tier includes the query
processor, the sensing data mining processor, the context-aware
rule engine, and the event processor. Among those functions,
only the query processor is mandatory. The query processor is
responsible for making optimal query plans, executing the
queries, and processing the received sensor data. The sensor data
mining processor detects outliers, analyzes patterns, and predicts
some events. The event processor creates events within the
COSMOS based on the sensor data. The context-aware rule
engine processes context-aware rules created by applications. If
an application needs a context-aware sensor data processing
service, then it specifies appropriate rules based on the related
background knowledge. Before requesting sensor data from the
COSMOS, the application has to input the rule to the COSMOS
using Open API. For example, the healthcare application inputs a
rule which describes the abnormal conditions of patients to the
context-aware rule engine before requesting sensor data as in the
following rule example: if temperature > 37 & momentum <
threshold, then turn on the red light located in the office. Then,
the healthcare application requests sensor data from the
COSMOS. While receiving sensor data related to the patients,
the context-aware rule engine processes sensor data based on the
rules. If an abnormal condition is detected, then the context-
aware rule engine processes the situation.

C. USN Service Tier

The USN service tier includes the Open API, the USN

directory service, and the security manager functionalities. The
Open API provides a communication interface (login, query,
report, logout, and so on) to the applications and is
implemented using web service. This is the entrance point to
the COSMOS for the applications. The USN directory service
provides the metadata of sensor networks. The applications and
other functions provided by the COSMOS refer sensor
network metadata to USN directory service. The security
manager provides authentication, authorization and
confidentiality functions to protect the COSMOS.

Figure 3 describes possible service examples which use the
USN middleware to acquire sensor data from sensor networks.
There are three applications: building monitoring, air pollution
monitoring, and water monitoring. There are also three sensor
networks: waterwork/sewage monitoring, air pollution
monitoring on the street, and building monitoring. All of the
sensor networks and applications are connected via the USN
middleware. If all applications operate with each sensor
network directly, each application developer has to know the
details of each sensor network. By using the USN middleware,
an application developer only needs to implement the Open
API. A sensor network developer only needs to know the
sensor network common interface. The deployed sensor
networks can be shared among applications with appropriate
authorization policy.

IV. Sensor Network Common Interface

In Korea since 2006, there have been many pilot projects to
verify the feasibility of sensor related technology for real life,
which have tested sensor networks in contexts such as ocean

700 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

monitoring, weather monitoring, mountain monitoring, and so
on. These pilot projects have achieved meaningful results.
Sensor network technologies have been proven to be viable in
real-life automatic monitoring systems. However, the
interoperability of sensor networks has become a serious issue.
Sensor networks implemented for certain applications cannot
be used by other applications because sensor networks are
implemented according to specific application requirements.
Each application requires its own sampling rate, sensing type,
connection method, and communication interface between
application and sensor networks, sensor node software
platform, and so on.

To ensure independence and to provide a communication
interface at the same time, there is a need for standardized
interfaces between sensor networks and applications. From the
COSMOS perspective, Open API and the sensor network
common interface provide sensor network abstraction at
different levels. If COSMOS is used, application developers
use Open API to access sensor networks, and then the
COSMOS uses the sensor network common interface to
communicate with sensor networks. If an application is to
access sensor networks directly, then the application developer
has to implement the sensor network common interface. In
Korea, the sensor network common interface was accepted as a
domestic standard in 2007 by the Telecommunication and
Technology Association (TTA) [15]. At the same time, we
have been trying to make this interface an international
standard with ITU-T since 2007 [16]-[18].

In this section, the sensor network common interface is
described. This interface defines the communication protocol
and messages at the implementation level. The messages are
defined and added by the application requirements; therefore,
the interface is inclusive. The sensor network developer does
not need to implement all the messages exhaustively. In this
paper, a host and COSMOS are used interchangeably.
Basically, a host is an entity which uses sensor network(s).

Figure 4 shows the communication model of the COSMOS

Fig. 4. COSMOS communication model.

COSMOS

Adaptor Adaptor

Standardized interface:
Sensor network common interface

Standardized
communication

Non-standardized
communication

Fig. 5. Communication protocol.

COSMOS Adaptor

Connection channel

1. Connection information exchange

Control channel

Command channel

2. Sensor network authentication

Control channel

Command channel

3. Control/data exchange

from the sensor network developer’s point of view. The
coverage of the sensor network common interface is between
an adaptor and the COSMOS. From the viewpoint of the
COSMOS, the protocol used within a sensor network is
beyond its scope.

In COSMOS, two kinds of message transport binding (MTB)
are defined: binary message over TCP and XML over HTTP.
Depending on the adaptor implementation, the sensor network
developers choose one of them to communicate with the
COSMOS. Using XML is a good way to exchange information
because it is quite extensible and used widely. However, for
devices with limited resources, such as low computing resource,
limited battery power, and short storage, XML messages may not
be appropriate because the XML parser has to be loaded on the
resource restrained device to process the XML messages. In such a
case, the binary message over TCP MTB may be a more
appropriate choice. Whichever MTB is used, the communication
protocol and message contents are the same.

1. Communication Protocol

The sensor network common interface defines three
channels and a three step communication protocol. The three
channels include the connection channel, the command
channel, and the control channel. The three steps are the
following: connection information exchange, sensor network
authentication, and control/data exchange. Figure 5 shows the
three channels and three steps.

The connection channel delivers connection information to
the sensor network. Using connection information delivered to
the sensor network, the adaptor tries to open control and
command channels.

• Connection channel: The connection information of
command channel and control channel are delivered to the
sensor network via the connection channel. The connection

ETRI Journal, Volume 30, Number 5, October 2008 Marie Kim et al. 701

ConnResCtrl
(Result, EncryptMode, ConnString)

Tcpip://123.456.78.
90/info?ControlPort
=1234&Command

Port=1234

Fig. 6. Connection channel information flow.

COSMOS Adaptor

ConnReqCtrl (Snid)

Fig. 7. Establishment of command and control channels.

 COSMOS Adaptor

AuthReqCtrl (Snid, credential, controlchannel)

AuthResCtrl (AuthResult, AuthToken/SessionKey)

Adaptor

AuthReqCtrl (Snid, credential, commadchannel)

AuthResCtrl (AuthResult, AuthToken/SessionKey)

Control channel Command channel

channel information is fixed ahead of runtime.

• Command channel: The commands (sensor data request,
monitoring data request) and reports are delivered using the
command channel. The COSMOS can handle other jobs while
waiting for the reports.

• Control channel: The controls (sensor node on/off, sensor
network metadata request, and so on) and responses are
delivered via the control channel. The COSMOS has to wait
for the response without performing other tasks.

Figure 6 shows an example of the connection channel
information flow. In this example, binary messages are used
and the sensor network starts to connect. The adaptor requests
the COSMOS to connect using the ConnReqCtrl message.
Then the COSMOS checks the Snid contained in ConnReqCtrl.
If the Snid is valid, then the COSMOS provides connection
information (ConnString) to the adaptor using a ConnResCtrl
message. In this case, the ConnString contains socket addresses
which are used for the command and control channels. The
control channel uses IP address = 123.456.78.90 and port# =
1234. The command channel uses IP address = 123.456.78.90
and port# =4567. The EncryptMode indicates how to encrypt
the messages exchanged.

Figure 7 shows the process of establishing command and
control channels. In this stage, sensor network authentication is
performed using AuthReqCtrl/AuthResCtrl messages. The

Table 1. Messages descriptions (C: COSMOS, S: sensor network).

Category Message Description

ReqConnCtrl Connect request (C→S)

ConnReqCtrl Connect request (C←S)

ConnResCtrl Connect response (C→S)

DisConnReqCtrl Disconnect ctrl (C↔S)

AuthReqCtrl Authentication request

Connect
Disconnect

AuthResCtrl Authentication response

NetworkInfoReq Network metadata request (C→S)

BufferDataReq Buffered data request (C→S)

CmdActionReq Command action request (C→S)

UpdateCmdReq Command update request (C→S)

ControlNetworkReq Network control (C→S)

Request

ControlNodeReq Node control (C→S)

NetworkInfoRes
Sensor network metadata
response (C↔S)

BufferDataRes Buffered data response (C↔S)

CmdActionRes Command action response (C↔S)

UpdateCmdRes Command update response (C↔S)

ControlNetworkRes Network control response (C↔S)

Response

ControlNodeRes Node control response (C↔S)

InstantCmd Instant command (C→S)

ContinuousCmd Continuous command (C→S)

InstantEventCmd Event command (C→S)

InstantAggCmd
Instant aggregation command
(C→S)

ContinuousAggCmd
Continuous aggregation
command (C→S)

RunActuatorCmd Run actuator command (C→S)

MonitoringStartCmd Monitoring start command (C→S)

Command

MonitoringStopCmd Monitoring stop command (C→S)

SensingValueRpt Sensor value report (C↔S)

RunActuatorRpt Run actuator report (C↔S)

FinishRpt Finish report

MonitoringRpt Monitoring report

ErrorRpt Error report

Report

UpdateRpt Update report

ChannelCheckCtrl Channel check control

ChannelConfirmCtrl Channel confirm control Check

NakChk Nagative acknowledgment check

authentication related information (mode, key, algorithm, and
so on) have been previously registered at the USN directory
service. Two modes are supported in the COSMOS:

702 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

ID/password-based authentication and certificate-based
authentication. After authentication, the command/control can
be delivered to the sensor networks, and the response/report
can be delivered to the COSMOS.

2. Message Categories

The sensor network common interface can be extended if
there are other application requests which cannot be covered by
the existing messages. Messages can be categorized as follows.

• Connect/disconnect: channel establishment
• Request/response: handles sensor network metadata,

sensor network control, and command action control
• Command/report: handles sensor data, monitoring data,

and actuator manipulation
• Check: channel check and error check
Table 1 describes the messages. Among these, the messages

related with the connection, authentication, and the sensor
network metadata exchange are mandatory.

3. Functions Provided

By exchanging the messages defined in Table 1, the
following functions are provided.

• Connection management: connects/disconnects the
channel between the COSMOS and the sensor network.

• Authentication: authenticates the sensor networks.
• Sensor network metadata exchange: as soon as connected,

the sensor networks deliver metadata to COSMOS to inform
the current status of sensor network.

• Network/node control: frequency control, topology control,
and node control requests/responses are exchanged.

• Buffered data exchange: the buffered data stored within an
adaptor (if any) is delivered to the COSMOS.

• Command processing: the sensor data related commands
and reports are exchanged.

• Monitoring processing: the monitoring related commands
and reports are exchanged.

• Actuator processing: the actuator control.
• Error report: reports sensor network error to the COSMOS.
• Channel check: checks channel status.

4. Sensor Data Processing

The COSMOS embraces sensor networks and RFID reader
networks. In the COSMOS, RFID tag data is processed
differently than other sensor data. Sensor data represents the
current spatiotemporal situation. Therefore, no sensor data is
dropped. However, RFID tag data is often redundant. The
COSMOS provides filtering functions to reduce redundant
RFID tag data before sending them to applications. The sensor

Fig. 8. Sensor network common interface manager structure.

XML message processor

HTTP

Binary message
processor

TCP

Command manager Report manager

SN metadata manager

Sensor network monitor, query processor in COSMOS

atmosphere monitoring sensor network, fire detection sensor network,
health care sensor network, sensor network simulator

RFID event generator

Interface manager External request
processor

Sensor network
communication

layer

Sensing data
processing layer

Interface layer

network common interface manager creates events to filter
redundant RFID tag data. Five events, namely, TagSeen,
TagVanished, SoftRead, FirRead, and TagExpired are defined.

In the COSMOS, the sensor network operation modes are
defined as pull mode and push mode. In pull mode, sensor
networks send sensor data in response to explicit commands
from the host. To operate in pull mode, sensor nodes have to
process commands. The capability of processing commands
and the maximum number of commands that can be processed
at the same time have to be registered at the USN directory
service before runtime. By using this capability data,
COSMOS does not send more commands to the sensor
network if the number of running commands equals the
maximum number of commands that can be processed
concurrently. In push mode, sensor networks send sensor data
periodically. Then, the COSMOS processes the sensor data
according to requests by applications. An RFID reader usually
operates in push mode.

Figure 8 shows the sensor network common interface
manager structure. The sensor network communication layer
communicates with the adaptors, and it supports HTTP and
TCP transport protocols. The sensing data processing layer
handles command/request and report/response. The interface
layer provides a interface to and from the sensor network
monitor and query processor.

5. XML Schema Example

Figure 9 shows an example of the XML schema. The
differential characteristic of the COSMOS is that it handles a
wide spectrum of sensor networks. If a sensor network operates
in push mode, COSMOS receives sensor data periodically, and
then processes it according to the application requirements. If
the sensor network can process commands with condition(s),
then COSMOS sends the commands with conditions to the
sensor network for effective in-network query processing. For

ETRI Journal, Volume 30, Number 5, October 2008 Marie Kim et al. 703

Fig. 9. Example of the XML schema.

<!-- InstantCmd -->
<xsd:complexType name="instantCmd">

<xsd:sequence>
<xsd:element name="commandID" type="xsd:int"

 minOccurs="1" maxOccurs="1"/>
<xsd:element name="nodeID" type="xsd:long"

 minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="sensingTypeID" type="msg:sensingTypeID"

 minOccurs="1" maxOccurs="unbounded"/>
<xsd:element name="condition" type="msg:condition"

 nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<!-- SensingValueRpt -->
<xsd:complexType name="sensingValueRpt">

<xsd:sequence>
<xsd:element name="commandID" type="xsd:int"

 minOccurs="1" maxOccurs="1"/>
<xsd:element name="nodeID" type="xsd:long"

 minOccurs="1" maxOccurs="1"/>
<xsd:element name="sendingTime" type="xsd:int"

 minOccurs="1" maxOccurs="1"/>
<xsd:element name="sensingValue" type="msg:sensingValue"

 minOccurs="1" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

Table 2. Sensing type list (partial).

ID Type Unit Length

0x1710 Temperature oC 4 bytes, float

0x1702 Salinity % 4 bytes, float

0x1703 Dissolved oxygen % 4 bytes, float

0x1704 Battery V 4 bytes, float

0x1705 Battery % 4 bytes, float

0x1706 Pulse bpm 4 bytes, int

0x1707 Momentum mG (1 G=980 cm/s2) 4 bytes, int

0x1708 Blob - N bytes, char

0x1709 Pressure gf/cm2 2 bytes, int

0x170A Height cm 2 bytes, int

0x170B CO ppm 4 bytes, float

example, a command may be like this: “Report {temperature,
humidity, CO2} from sensor network #1 if (temperature>
30°C) and (CO2>threshold).” It may be expressed as an
InstantCmd message, and the sensor data collected is delivered
to the COSMOS using a SensingValueRpt. In push-mode
sensor networks, then, the sensor networks periodically
transmit SensingValueRpt messages to the COSMOS.

6. Types of Sensing

In COSMOS, several sensing types are defined to make
implementation efficient and interoperable. Table 2 shows part
of the defined sensing type list.

V. Implementation and Performance

The COSMOS functionalities are continually being
enhanced. Therefore, a full performance assessment of the
COSMOS is not provided here. All of our tests were
performed using a sensor network simulator developed within
the COSMOS project. These performance tests focused on the
performance of sensor network common interface processing
between the COSMOS and the sensor network (simulator). For
a client using all of the services provided in the COSMOS, the
processing time would be longer than the results given here.
The COSMOS was developed in Java, and it uses the SPRING
framework. In the case of Open API, the Axis is used to
provide a web service. The test-bed to measure performance
was designed with the following specifications:

COSMOS (sensor network interface manager)
• Language: Java 1.5.0.13
• Framework: Spring 2.0
• Database: derby 10.3.1.4 (for logging)
• CPU: Mobile DualCore Intel Core Duo T2500, 2,000 MHz
• Memory: 2,048 MB
• HDD: 100 GB, 5,400 RPM, S-ATA
• OS: Microsoft Windows XP Professional
Sensor network simulator (SN simulator)
• Language: Java 1.5.0.13
• CPU: QuadCore Intel Xeon E5345, 2,333 MHz
• Memory: 8,192 MB (8 GB)
• VGA: ATI Radeon HD 2600 XT (256 MB)
• HDD: 400 GB, IDE
• OS: Microsoft Windows Server 2003, Enterprise Edition

1. Sensor Network Simulator

The SN simulator simulates both an adaptor and a sensor
network. It provides menus to create a sensor network and an
RFID reader. When creating a sensor network, a user can select
and/or input an MTB, a sensing mode, a sensor network
identifier, a maximum command number, connection
information (IP address, port number), a monitoring type, a
buffering interval, a number of sensor nodes, supported sensor
types, and so on. These parameters can be easily selected by
using a graphical user interface (GUI) as shown in Fig. 10. A
simulator user can also modify necessary metadata of a sensor
network after creating it.

With the simulator, the user can dynamically invoke some
abnormal conditions, such as sensor node addition or deletion,
network connection failure, and other error conditions. After
creating a sensor network or an RFID reader, a user can save
their profiles in XML and reopen them later. The battery level
decreases with the passing time to reflect a real situation.

704 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

Fig. 10. COSMOS sensor network simulator.

Fig. 11. Sensor network connection messages flow.

COSMOS Adaptor

ConnReqCtrl

ConnResCtrl

AuthReqCtrl

AuthResCtrl

ReqConnCtrl In case of COSMOS-initiated

1 roundtrip

1 roundtrip

Sensor data can be generated in four modes: incremental,
decremented, random, and file.

2. Sensor Network Connection Establishment

The COSMOS supports two modes of sensor network
connection establishment. For COSMOS-initiated sensor
network connection, the COSMOS requests the sensor
network to connect to it. This type of connection requires 5
messages, that is, 2.5 roundtrips. For sensor network-initiated
sensor network connection, the sensor network requests
connection to the COSMOS and requires 4 messages, that is, 2
roundtrips. Figure 11 shows the message flow of both cases.
Authentication is performed by using the ID/password or
certificate. The method is determined at registration time at the
USN directory service.

The purpose of this test was to measure the connection times
via XML message over HTTP and via binary message over
TCP. In each case, both authentication methods (ID/password-
based, certificate-based) were tested. Therefore, there are eight
cases. Table 2 shows the measured times for each case.

• COSMOS-initiated connection:
- ID/passwd-based authentication

Ttotal_connect={Tcmp + Tamp + Ttd }× 5+ Tauth_idpasswd
- Certificate-based authentication

Table 3. COSMOS-adaptor connection time.

XML over HTTP Binary over TCP

ID/Password Certificate ID/ Password Certificate
COSMOS-

initiated 2,560 ms 2,547 ms 2,106 ms 2,015 ms

Adaptor-
initiated 2,331 ms 2,228 ms 2,141 ms 2,325 ms

Fig. 12. Query processing flow.

COSMOS Adaptor

Get temperature, humidity
from Snid=1

InstantCmd (temperature, humidity)

Sensor
network ID=1

Snid=2
Snid=50

Report (temperature, humidity)
Report (temperature, humidity)

t1

t2

Instant command processing time=t2-t1 (ms)

Ttotal_connect={Tcmp + Tamp + Ttd }× 5 + Tauth_certificate

• SN-initiated connection:
- ID/passwd-based authentication

Ttotal_connect={Tcmp + Tamp + Ttd }× 4+ Tauth_idpasswd
- Certificate-based authentication

Ttotal_connect={Tcmp + Tamp + Ttd }× 4 + Tauth_certificate
Ttotal_connect: total connection time
Tcmp: processing time for a message in the COSMOS
Tamp: processing time for a message in the adaptor
Ttd: transmission delay (COSMOS adaptor)
Tauth_idpasswd: processing time for ID/passwd authentication
Tauth_certificate: processing time for certificate authentication
As seen in Table 3, the connection time when the XML over

HTTP communication protocol is used is a little bit longer than
the processing time when the binary over TCP communication
protocol is used. Regarding the authentication method, the
difference is negligible. According to the results, the connection
establishment takes about 2 seconds in all cases, which is
tolerable in real fields.

3. Query Processing in Multiple Sensor Networks

The purpose of this test was to assess the performance
degradation of the COSMOS when the numbers of sensor
networks which process the same query simultaneously are
gradually increased. The processing times were measured from

ETRI Journal, Volume 30, Number 5, October 2008 Marie Kim et al. 705

Fig. 13. Transaction processing time.

Pr
oc

es
si

ng
 ti

m
e

(m
s)

0 4 8 12 16 20 24 28 32 36 40 44 48 520

200

400

600

800

1,000

1,200

Number of target sensor network

Transaction processing time (binary msg over tcp) Snid=1
Snid=2
Snid=3

the query sending time (t1) at the COSMOS to the receiving
time (t2) of sensor data at the COSMOS. Figure 12 shows the
test method.

• The tests were performed under the following conditions.
• The binary over TCP MTB was used.
• 50 sensor networks were prepared with 100 sensor nodes

each.
• Each sensor node was equipped with two sensors

(temperature and humidity).
• The number of sensor networks which process queries at

the same time was increased from 1 to 50.
• An instant query was sent to each connected sensor

network.
• The processing time {t2–t1} was measured for the same

sensor networks (Snid=1, Snid=2, and Snid=3).
• Ttotal_sensing= query creation time at COSMOS +

transmission delay + query processing time at SN simulators +
report creation time at SN simulator + transmission delay +
report processing time at COSMOS = {Tcmp × the number of
sensor networks operating + Ttd + Tamp + Tamp × the number of
sensor nodes operating + Ttd + Tcmp × the number of sensor
networks operating network × the number of sensor nodes
operating

• t1 is the time when the COSMOS sends an InstantCmd
message to each sensor network.

• t2 is the time when all reports from the sensor networks are
received.

Figure 13 shows the processing times of Snid=1, Snid=2,
and Snid=3 as the number of running sensor networks was
increased gradually. Some peaks are experimental exceptions
and can therefore be ignored. The processing times within the
COSMOS are almost the same, even when the number of
sensor networks increases to 50. The COSMOS is intended to
support integrated query processing over multiple
heterogeneous sensor network environments. In implementing
sensor network common interface processing, any of a variety
of sensor network types can be handled by the COSMOS at the
same time. Figure 13 shows that the query processing
performance of the COSMOS over 50 sensor networks with

100 sensor nodes, each equipped with two sensors, is tolerable
around 400 ms. Moreover, the number of sensor networks
processing simultaneously does not significantly degrade the
performance of the COSMOS. Technically, the whole query
processing time is dependent on the processing time within
each sensor network, but the pure performance of the
COSMOS can be analyzed separately.

VI. Conclusion

In this paper, we presented a new solution for integrated
sensor data processing over heterogeneous sensor networks.
The COSMOS handles heterogeneous sensor networks and
provides common functions, such as query processing,
metadata definition/management, and so on, for various
monitoring applications. We demonstrated by simulation that
the COSMOS provides integrated sensor data to multiple
applications by using sensor data from multiple sensor
networks with reasonable performance.

This has great potential for applications in remote monitoring
fields. By using the COSMOS, remote monitoring applications
can check the current environment status and control the
environment without human effort. The advantage of the
COSMOS over other interfaces defined by IEEE1451,
SensorML, and GSN is that current non-standardized sensor
networks can be used in many applications without any
modification. They only need to implement appropriate
adaptors to communicate with the host. This will encourage the
active proliferation of sensor-related industries.

There are still some unresolved issues. They include the
handling mobile sensor nodes, access to devices as sensor-node
units for nodes which have IP addresses, expansion of sensing
types, and the interaction between the COSMOS and the
COSMOS for global scale service provision. In our future
research, we will deal with these issues.

References

[1] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures,” ScienceDirect Online,
vol.1, 2003, pp. 293-315.

[2] Y. Wei, J.Heidemann, and D. Estrin, “An Energy-Efficient MAC
Protocol for Wireless Sensor Networks,” Proc. 21th Annual Joint
Conf. the IEEE Computer and Comm. Societies, vol. 3, 2002, pp.
1567-1567.

[3] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” ACM SIGMOD Record,
vol. 31, 2002, pp. 9-18.

[4] M. Botts et al., OGC Sensor Web Enablement: Overview and
High Level Architecture, OpenGIS White Paper, 2007.

706 Marie Kim et al. ETRI Journal, Volume 30, Number 5, October 2008

[5] K. Aberer, M. Hauswirth, and A. Salehi, “A Middleware for Fast
and Flexible Sensor Network Deployment,” VLDB, 2006, pp.
1199-1202.

[6] Y.B. Kim, M. Kim, and Y.J. Lee, “COSMOS: A Middleware
Platform for Sensor Networks and a u-Healthcare Service,” Proc.
23rd ACM Symp. Applied Computing, 2008, pp. 512-513.

[7] T.H.H. Vu et al., “Spatiotemporal Pattern Mining Technique for
Location-Based Service System,” ETRI Journal, vol. 30, no. 3,
June 2008, pp. 421-431.

 [8] M. Sgroi et al., “A Service-Based Universal Application Interface
for Ad Hoc Wireless Sensor and Actuator Networks,” Ambient
Intelligence, Springer-Verlag, 2005, pp.149-172.

[9] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” thesis, Cornell
University, 2002.

[10] C.C. Shen, C. Srisathapornphat, and C. Jaikaeo, “Sensor
Information Networking Architecture and Applications,” IEEE
Personal Comm. Magazine, 2002. pp.52-59.

[11] G. Fedak et al., “XtremWeb: A Generic Global Computing
System,” Proc. 1st Int’l Symp. Cluster Computing and the
Grid, 2001, pp. 582-587.

[12] M. Botts and A. Robin, Sensor Model Language (SensorML)
Implementation Specification, OpenGIS Implementation
Specification, 2007.

[13] IEEE Instrumentation and Measurement Society, IEEE Standard
for a Smart Transducer Interface for Sensors and Actuators-
Common Functions, Communication Protocols, and Transducer
Electronic Data Sheet (TEDS) Formats, IEEE Std 1451.0, 2007.

[14] Y. Doh, “USN Applications & Technologies,” RFID/USN Korea,
Oct. 2005.

[15] M. Kim, and Y.J. Lee, The Standard Interface for Heterogeneous
Sensor Networks, TTA, TTAS.KO-06.0169, 2007.

[16] M. Kim, and S. Yoo, Proposal for New Draft Recommendation
on USN Middleware Reference Model, ITU-T AVD3121, 2007.

[17] M. Kim, J.W. Lee, and S. You, Proposal for a Draft
Recommendation on USN Middleware Reference Architecture,
ITU-T AVD 3370, 2008.

[18] M. Kim and S. Yoo, Service Description and Requirements for
USN Middleware, ITU-T F.usn-mw, 2008.

Marie Kim received the BS and MS degrees in
computer science from Sogang University, Rep. of
Korea, in 1996 and 1998, respectively. She is
currently with the ETRI, Rep. of Korea. She was a
research member of the IMT 2000 project with
Samsung. Her research interests include the
development and standardization of mobile RFID

middleware and USN middleware.

Jun Wook Lee received the MS and PhD degrees
in electrical and computer engineering from
Chungbuk National University, South Korea, in
1997 and 2003, respectively. He is currently
working at ETRI, South Korea. His major research
interests include sensor data mining, sptatio-
temporal data mining, location-based services,

context awareness in the ubiquitous computing environment, and the
development of a USN middleware platform.

Yong Joon Lee received the MS degree from
Yonsei University, Korea, in 1988, and the PhD
degree in computer science from Chungbuk
National University, Korea, in 2001. He is
currently working at ETRI, Korea. His major
research interests include RFID and sensor data
management, sensor data mining, context

awareness in ubiquitous computing environment, and the development
of sensor network middleware.

Jae-Cheol Ryou received the BS degree in
industrial engineering from Hanyang University
in 1985, the MS degree in computer science
from Iowa State University in 1988, and the
PhD degree in electrical engineering and
computer science from Northwestern
University in 1990. He joined the faculty of the

Department of Computer Science at Chungnam National University,
Korea, in 1991. His research interests are Internet security and
electronic payment systems. He is currently with the Internet Intrusion
Response Technology Research Center (IIRTRC) of Chungnam
National University, Korea.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

