• 제목/요약/키워드: Networks

검색결과 22,394건 처리시간 0.038초

Selection of Machine Learning Techniques for Network Lifetime Parameters and Synchronization Issues in Wireless Networks

  • Srilakshmi, Nimmagadda;Sangaiah, Arun Kumar
    • Journal of Information Processing Systems
    • /
    • 제15권4호
    • /
    • pp.833-852
    • /
    • 2019
  • In real time applications, due to their effective cost and small size, wireless networks play an important role in receiving particular data and transmitting it to a base station for analysis, a process that can be easily deployed. Due to various internal and external factors, networks can change dynamically, which impacts the localisation of nodes, delays, routing mechanisms, geographical coverage, cross-layer design, the quality of links, fault detection, and quality of service, among others. Conventional methods were programmed, for static networks which made it difficult for networks to respond dynamically. Here, machine learning strategies can be applied for dynamic networks effecting self-learning and developing tools to react quickly and efficiently, with less human intervention and reprogramming. In this paper, we present a wireless networks survey based on different machine learning algorithms and network lifetime parameters, and include the advantages and drawbacks of such a system. Furthermore, we present learning algorithms and techniques for congestion, synchronisation, energy harvesting, and for scheduling mobile sinks. Finally, we present a statistical evaluation of the survey, the motive for choosing specific techniques to deal with wireless network problems, and a brief discussion on the challenges inherent in this area of research.

Power Control with Nearest Neighbor Nodes Distribution for Coexisting Wireless Body Area Network Based on Stochastic Geometry

  • Liu, Ruixia;Wang, Yinglong;Shu, Minglei;Zhao, Huiqi;Chen, Changfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5218-5233
    • /
    • 2018
  • The coexisting wireless body area networks (WBAN) is a very challenging issue because of strong inter-networks interference, which seriously affects energy consumption and spectrum utilization ratio. In this paper, we study a power control strategy with nearest neighbor nodes distribution for coexisting WBAN based on stochastic geometry. Using homogeneous Poisson point processes (PPP) model, the relationship between the transmission power and the networks distribution is analytically derived to reduce interference to other devices. The goal of this paper is to increase the transmission success probability and throughput through power control strategy. In addition, we evaluate the area spectral efficiency simultaneously active WBAN in the same channel. Finally, extensive simulations are conducted to evaluate the power control algorithm.

이기종 차량 네트워크간의 연동을 위한 프레임워크 설계 (A Design of Framework for Interworking between Heterogeneous Vehicle Networks)

  • 윤상두;김진덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.219-222
    • /
    • 2009
  • 최근 자동차산업과 통신 기술이 발전함에 따라 ITS(Intelligent Transportation System)의 핵심인 차량내 네트워크(In Vehicle network) 기술이 대두되고 있다. 그러나 현재 제공되고 있는 차량 내 네트워크 기술은 하나의 네트워크로 이루어 진 것이 아니라, 통신 속도와 비용 및 효율성 측면을 고려하여 필요에 따라서 다르게 구성이 되어 상용화 되어 있다. 따라서 차량 네트워크 통신 및 설계의 복잡성이 증대 되었고 이를 연동할 수 있는 프레임 워크가 요구되어진다. 따라서 본 논문에서는 차내망 이기종 네트워크간의 연동을 위한 프레임워크를 설계하였다.

  • PDF

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • 대한임베디드공학회논문지
    • /
    • 제19권2호
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

축적 컴퓨팅을 위한 멤리스터 소자의 최적화 (Optimization of Memristor Devices for Reservoir Computing)

  • 박경우;심현진;오호빈;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, artificial neural networks have been playing a crucial role and advancing across various fields. Artificial neural networks are typically categorized into feedforward neural networks and recurrent neural networks. However, feedforward neural networks are primarily used for processing static spatial patterns such as image recognition and object detection. They are not suitable for handling temporal signals. Recurrent neural networks, on the other hand, face the challenges of complex training procedures and requiring significant computational power. In this paper, we propose memristors suitable for an advanced form of recurrent neural networks called reservoir computing systems, utilizing a mask processor. Using the characteristic equations of Ti/TiOx/TaOy/Pt, Pt/TiOx/Pt, and Ag/ZnO-NW/Pt memristors, we generated current-voltage curves to verify their memristive behavior through the confirmation of hysteresis. Subsequently, we trained and inferred reservoir computing systems using these memristors with the NIST TI-46 database. Among these systems, the accuracy of the reservoir computing system based on Ti/TiOx/TaOy/Pt memristors reached 99%, confirming the Ti/TiOx/TaOy/Pt memristor structure's suitability for inferring speech recognition tasks.

  • PDF

이더넷 메시 망에서의 물리 토폴로지 발견 알고리즘 (Physical Topology Discovery Algorithm for Ethernet Mesh Networks)

  • 손명희;김병철;이재용
    • 대한전자공학회논문지TC
    • /
    • 제42권4호
    • /
    • pp.7-14
    • /
    • 2005
  • 통신망에 대한 토폴로지 발견에 대한 기존의 연구는 주로 IP망에 대한 것으로 이더넷 장비의 토폴로지 발견은 배제되었다. 그러나 가격대비 성능이 우수한 이더넷 망이 점차 매트로 화되면서 이더넷 망에 대한 토폴로지 발견을 통하여 이더넷 망 관리에 대한 필요성이 요구 되었다. 하지만 벤더 의존적인 토폴로지 발견 알고리즘과 2계층 포워딩 테이블에 의존적인 토폴로지 발견 알고리즘으로 인하여 메시 구조의 토폴로지는 발견하지 못한다. 본 논문에서는 이러한 제약을 극복하기 위하여 이더넷 망을 브리지 망과 호스트 망으로 구분하여 각 망에 효과적인 토폴로지 발견 알고리즘을 제안한다. 두 가지 종류의 망의 경계에 있는 브리지들을 에지 브리지라고 정의하고 에지 브리지 내부의 브리지 망은 스패닝 트리 프로토콜과 관련된 표준 MIB에 의하여 메시 구조의 토폴로지 발견이 가능하고 에지 브리지의 외부 망인 호스트 망은 2계층 포워딩 테이블과 관련된 표준 MIB을 이용함으로써 실시간적인 호스트망의 토폴로지 발견이 가능하다.

퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계 (The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks)

  • 박병준;오성권;장성환
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

파라미터 튜닝을 통한 Relation Networks 성능개선 (Improving the performance for Relation Networks using parameters tuning)

  • 이현옥;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.377-380
    • /
    • 2018
  • 인간의 추론 능력이란 문제에 주어진 조건을 보고 문제 해결에 필요한 것이 무엇인지를 논리적으로 생각해 보는 것으로 문제 상황 속에서 일정한 규칙이나 성질을 발견하고 이를 수학적인 방법으로 법칙을 찾아내거나 해결하는 능력을 말한다. 이러한 인간인지 능력과 유사한 인공지능 시스템을 개발하는데 있어서 핵심적 도전은 비구조적 데이터(unstructured data)로부터 그 개체들(object)과 그들간의 관계(relation)에 대해 추론하는 능력을 부여하는 것이라고 할 수 있다. 지금까지 딥러닝(deep learning) 방법은 구조화 되지 않은 데이터로부터 문제를 해결하는 엄청난 진보를 가져왔지만, 명시적으로 개체간의 관계를 고려하지 않고 이를 수행해왔다. 최근 발표된 구조화되지 않은 데이터로부터 복잡한 관계 추론을 수행하는 심층신경망(deep neural networks)은 관계추론(relational reasoning)의 시도를 이해하는데 기대할 만한 접근법을 보여주고 있다. 그 첫 번째는 관계추론을 위한 간단한 신경망 모듈(A simple neural network module for relational reasoning) 인 RN(Relation Networks)이고, 두 번째는 시각적 관찰을 기반으로 실제대상의 미래 상태를 예측하는 범용 목적의 VIN(Visual Interaction Networks)이다. 관계 추론을 수행하는 이들 심층신경망(deep neural networks)은 세상을 객체(objects)와 그들의 관계(their relations)라는 체계로 분해하고, 신경망(neural networks)이 피상적으로는 매우 달라 보이지만 근본적으로는 공통관계를 갖는 장면들에 대하여 객체와 관계라는 새로운 결합(combinations)을 일반화할 수 있는 강력한 추론 능력(powerful ability to reason)을 보유할 수 있다는 것을 보여주고 있다. 본 논문에서는 관계 추론을 수행하는 심층신경망(deep neural networks) 중에서 Sort-of-CLEVR 데이터 셋(dataset)을 사용하여 RN(Relation Networks)의 성능을 재현 및 관찰해 보았으며, 더 나아가 파라미터(parameters) 튜닝을 통하여 RN(Relation Networks) 모델의 성능 개선방법을 제시하여 보았다.

MIMO Ad Hoc Networks: Medium Access Control, Saturation Throughput, and Optimal Hop Distance

  • Hu, Ming;Zhang, Junshan
    • Journal of Communications and Networks
    • /
    • 제6권4호
    • /
    • pp.317-330
    • /
    • 2004
  • In this paper, we explore the utility of recently discovered multiple-antenna techniques (namely MIMO techniques) for medium access control (MAC) design and routing in mobile ad hoc networks. Specifically, we focus on ad hoc networks where the spatial diversity technique is used to combat fading and achieve robustness in the presence of user mobility. We first examine the impact of spatial diversity on the MAC design, and devise a MIMO MAC protocol accordingly. We then develop analytical methods to characterize the corresponding saturation throughput for MIMO multi-hop networks. Building on the throughout analysis, we study the impact of MIMO MAC on routing. We characterize the optimal hop distance that minimizes the end-to-end delay in a large network. For completeness, we also study MAC design using directional antennas for the case where the channel has a strong line of sight (LOS) component. Our results show that the spatial diversity technique and the directional antenna technique can enhance the performance of mobile ad hoc networks significantly.

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GENE EXPRESSION PROGRAMMING

  • Li, Kangshun;Li, Yuanxiang;Mo, Haifang;Chen, Zhangxin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.83-89
    • /
    • 2005
  • In this paper a new algorithm of learning and evolving artificial neural networks using gene expression programming (GEP) is presented. Compared with other traditional algorithms, this new algorithm has more advantages in self-learning and self-organizing, and can find optimal solutions of artificial neural networks more efficiently and elegantly. Simulation experiments show that the algorithm of evolving weights or thresholds can easily find the perfect architecture of artificial neural networks, and obviously improves previous traditional evolving methods of artificial neural networks because the GEP algorithm imitates the evolution of the natural neural system of biology according to genotype schemes of biology to crossover and mutate the genes or chromosomes to generate the next generation, and the optimal architecture of artificial neural networks with evolved weights or thresholds is finally achieved.

  • PDF