J. KSIAM Vol.9, No.2, 83-89. 2005

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL
NETWORKS VIA GENE EXPRESSION PROGRAMMING

KANGSHUN LI, YUANXIANG LI, HAIFANG MO, ZHANGXIN CHEN

ABSTRACT. In this paper a new algorithm of learning and evolving artificial neural
networks using gene expression programming (GEP) is presented. Compared with
other traditional algorithms, this new algorithm has more advantages in self-learning
and self-organizing, and can find optimal solutions of artificial neural networks more
efficiently and elegantly. Simulation experiments show that the algorithm of evolv-
ing weights or thresholds can easily find the perfect architecture of artificial neural
networks, and obviously improves previous traditional evolving methods of artificial
neural networks because the GEP algorithm imitates the evolution of the natural
_neural system of biology according to genotype schemes of biology to crossover and
mutate the genes or chromosomes to generate the next generation, and the optimal

architecture of artificial neural networks with evolved weights or thresholds is finally
achieved.

1. INTRODUCTION

The artificial neural network (ANN) [3, 4] imitates natural neural networks of bi-
ology of animal brains to solve complex social problems, such as a classifier problem
of diseases. The technology of ANNs is an interdisciplinary area that involves neu-
roscience, mathematics, statistics, physics, computer science, and engineering. ANNs
are divided into two classes: supervised and unsupervised. They have been applied to
almost all the fields, such as modeling, time series analysis, pattern identification, and
signal process and control. A biological neuron may have million different inputs, and
may send its outputs to many other neurons; neurons act in a three-dimensional space
pattern. Therefore, the neural networks of biological brains are much more complex
than any artificial neural network. Despite this fact, the artificial neural network can
handle many difficult, nonlinear, and complex processes.

To simulate a biological neural network more closely, we need to design an artificial
neural network by using algorithms that are random and close to the nature. There

Key words and phrases: gene expression programming, evolutionary, artificial neural network,
genotype, phenotype.

This work is partly supported by the National Natural Science Key Foundation of China with
Grant No. 60133010, the Research Project of Science and Technology of Education Department of
Jiangxi Province with Grant No. Gan-Jiao-Ji-Zi [2005] 150, and the Key Laboratory of High Perfor-
mance Computing Technology of Jiangxi Province with Grand No. JXHC-2005-003.

© THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2005

83

84 KANGSHUN LI, YUANXIANG LI, HAIFANG MO, ZHANGXIN CHEN

are many traditional designing algorithms of artificial neural networks, such as math-
ematical, numerical, and evolutionary algorithms and other hybrid algorithms. In this
paper a new algorithm is introduced to design weights or thresholds of artificial neu-
ral networks to generate an optimal architecture of ANNs. This algorithm is closer
to biological neural networks that use gene schemes, chromosomes, multi-genes, and
multi-chromosomes to crossover and mutate each other than any other traditional al-
gorithm. Experiments indicate that this algorithm is very simple and can easily and
accurately construct an optimal architecture of ANNs.

The paper is organized as follows. In section 2, a basic GEP theory will be in-
troduced. The algorithm of evolving weights and architectures of ANNs via GEP is
discussed in section 3. Then, in section 4 experiments are given to demonstrate the
algorithm of solving optimal artificial neural networks via GEP. Finally, in section 5
conclusions are given.

2. Basic GEP THEORY

GEP [1, 2] was introduced by Ferreira in 2001. It belongs to the research field of evo-
lutionary computations [6, 9] like a genetic algorithm (GA) and genetic programming
(GP) [8], and it is a natural development of GAs and GP. It also simulates the natural
biological evolution to generate new individuals of population through crossover and
mutation gene codes, i.e., chromosomes of the individuals at random. GEP has been
applied to many practical areas, such as solving system regression problems, fitting
economic prediction curves, building mathematical models to approximate complex
functions, solving parameter identification problems, and solving data mining prob-
lems. The goal of this paper is to focus on how to evolve weights or thresholds to build
an optimal architecture of artificial neural networks and to perform the corresponding
algorithm efficiently.

2.1. GEP structure. In GEP, a genome or chromosome consists of a linear and
symbolic string of fixed length composed of one or more genes. Despite their fixed
length it will be shown that GEP chromosomes can code expression trees with different
sizes and shapes. The structural organization of GEP genes is better understood in
terms of open reading frames (ORFs). In biology, an ORF or coding sequence of a
gene begins with the “start” codon, continues with the amino acid codons, and ends
at a termination codon. However, a gene possesses more than a respective ORF, with
sequences upstream from the start codon and sequences downstream from the stop
codon.

In addition, genes are structurally organized in a head that consists of arguments
including function symbols, variables, and constants, and in a tail that includes only
variables or constants. It is this structural and functional organization of GEP genes
that always guarantees production of valid programs or expression trees, no matter how
much and how profoundly we modify the chromosomes.

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GEP 85

FIGURE 1. Expression tree FiGURE 2. Expression tree
of function (1). of ANN.

2.2. GEP encoding and decoding. GEP uses the same kind of diagram represen-
tation as GP [5, 7], but the entities (expression trees or parse trees) decoded via GEP
are the expression of a genome, which is encoded using GEP rules and is different from
GP. These kinds of expression trees decoded via GEP are phenotype representations
of genome’s genotype of GEP individuals. Through crossover and mutation of genes,
chromosomes, multi-genes, and multi-chromosomes, optimal weights of artificial neural

networks can be produced, and the optimal architecture of artificial neural networks
can be obtained.

2.3. GEP representation. We consider an example of an algebraic expression:
(1) V(sina + cosb) x (a — b).

We call function (1) the original problem of GEP, and then convert it into an expression
tree as in Fig. 1.

In Fig. 1, “Q", “S", and “C” represent the square root, sin, and cos functions,
respectively. We define this kind of diagram as a representation of the phenotype of
GEP individuals of function (1). Function (1) is the chromosome function of GEP,
and the following gene sequence is the genotype of GEP individuals of function (1)
according to the GEP rule:

@) 1 23 45 6 78 90
Q * + — S C abdbadtd

where the first line denotes the order of the arguments of a GEP gene; ie., there
are ten arguments in this gene. The corresponding organization method between the
phenotype in Fig. 1 and the genotype of expression (2) will be given below.

We define a decoding method from the genotype like expression (2) into the pheno-
type as in Fig. 1 with the reading rules of a GEP gene sequence: The genotype of a
GEP gene sequence is transferred from the straightforward reading of the expression
tree from left to right and from top to bottom.

86 KANGSHUN LI, YUANXIANG L1, HAIFANG MO, ZHANGXIN CHEN

2.4. Genotype and phenotype of ANNs. In order to illustrate a GEP representa-
tion of ANNs, we introduce a logical expression tree as shown in Fig. 2 as a phenotype
of a complex ANN with the transferring threshold function from a genotype of ANN,
which is a single gene consisting of 12 places of head and 12 places of tail in the same
way as follows:

123 456789012345678901234
(3) QT TDabaDbbaQbaaabbabbabhbd
head tail

where “Q” represents a node with four argument inputs, “I” a node with three argu-
ment inputs, “D” a node with two argument inputs, and the a’s and b’s are external
inputs (terminal inputs) of an ANN neuron. In Fig. 2, each number from 0 to 17 rep-
resents the subscript of a weight, which has been obtained at random in the interval
range and represents the time order of generating random numbers of weights.

3. A NEwW ALGORITHM

We consider a complex feedforward multi-layer artificial neural network consisting
of a set of processing elements [10], also known as neurons or nodes, which are inter-
connected. It can be described as a directed graph in which each node ¢ performs a
transfer function f; of the form

n
@ = S wpat b), m=0,1,,M -1 i=12,..,mn,
i=1

where M is the number of layers in the network, y{”“ is the output of node i in the

m + 1th layer, 27" is the jth input to the node in the mth layer, w;7 is the connection
weight between nodes i and j in the mth layer, and b]* is the threshold (or bias) of
the node in the mth layer. Usually, fim"L1 is nonlinear, such as a heaviside, sigmoid, or
Gaussian function.

Assume the training set {(X;,v:) : i = 1,2,...,k}, where X; are the input vectors
and y; are the target outputs (the gene size is 30 with head size 8 and tail size 22).

In order to see the advantages of evolving ANNs in a better way via GEP, we set
the fitness function

k
(5) fitness = Z(M =10 — wil),

i=1

where M = 100, y; are the target outputs, and g; are the computing outputs. If
|9 — y;| < € for some ¢ = 1,2,...,k, change |§; — vi| to 0. The sizes of M and ¢ depend
on an ANN problem. Thus we can easily see that the larger the fitness value, the better

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GEP 87

the evolved ANN architecture. Therefore, the algorithm can be described according to
the genotype and phenotype representation of ANNs in section 2.4 as follows:

1. Create an initial population of an ANN genotype using the gene expression (3)
and the corresponding initial population of weights and thresholds according to
the number of weights of each GEP individual at random.

2. Transfer all the genotypes into phenotypes of ANN genes, and calculate all the
corresponding fitness values.

3. Select a single point gene (or chromosome) or multi-point gene (or chromosome,
multi-gene or multi-chromosome) of two ANN gene parents to cross, and then
select two weights of every individual to mutate randomly to generate new indi-
viduals.

4. Select a single point gene (or chromosome) or multi-point gene (or chromosome,
multi-gene or multi-chromosome) of an ANN gene parent to mutate, and then
select a weight of this individual to mutate to produce new individuals.

5. Recalculate the fitness value of the evolved individual if the value is larger than
the smallest fitness value of individuals in the population, then replace the bad
individual with the new individual, and generate the next population.

6. If the stop criterion is reached, i.e., if the fitness value of the best individual in
the population or the iteration number is more than a prescribed number, save
the best individual as the best architecture of an ANN. Otherwise, go to step 3.

4. SIMULATION EXPERIMENTS

In order to demonstrate the validity of constructing the optimal ANN architecture
using GEP, only the exclusive-or function (XOR) is used to perform our experiments
in this paper.

The XOR is a simple Boolean function of two activities with values 0 or 1, and when
the values of two activities are equal, the output of the final layer is 0; otherwise, the
output of the final layer is 1. It is known that this kind of function can be solved easily
using linear encoded neural networks. However, if we evolve this neural network using
GEP, all the structural and non-structural ANN architectures satisfying the XOR, the
inputs, and the final layer outputs can be obtained. This is the main difference between
a GEP algorithm and other mathematical algorithms.

In the GEP evolving, we set 7' = 100, the function set is {Q, T, D}, the population
size is 20, the terminal set is {a,b}, the weights range in the interval [-2,2], the head
length is 8, the tail length is 22, ¢ = 0.01, and we use a heaviside transfer function to
calculate all the outputs. We run the GEP program 30 times consecutively, and then
find the perfect solution as the best individual as follows:

123456789012345678901234567890

(6) QTQQDDbaaaabbbbaababbabaaaabba

88 KANGSHUN LI, YUANXIANG LI, HAIFANG MO, ZHANGXIN CHEN

FI1GURE 3. Expression tree FIGURE 4. {DDDabab}
of the exclusive-or function

in an ANN

where
Subscripts of Weights = {0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14, 15, 16, 17}
Random weights = {1.51,1.79,1.16,1.74, —1.97, —0.84, -1.16, —0.2, —0.44,
~1.11,1.61,—1.74, —1.84, —~1.91,0.55, —0.79, —0.16, —1.67, —1.15}.

According to the rule of transferring the genotype to the phenotype, expression (6) can
be written in the expression tree as in Fig. 3.

In the above experiments, if the function set is changed to { D} and other parameters
remain the same, then a two-layer artificial neural network can be obtained, a shorter
perfect ANN gene solution can be generated, and its expression tree is shown as in
Fig. 4. Hence we can easily see from the experiments that the ANN architecture
obtained using GEP is not unique, its architecture and shape depend on the function
set, the number of layers, the head length the tail length, etc.

5. CONCLUSIONS

From the above theoretical and experimental analysis of GEP, we see that the algo-
rithm of solving ANNs optimal architecture via GEP is easier than other algorithms.
In addition to the above experiments, some evolving experiments of complex ANNs
architectures have been also performed and in general we can fins an optimal solution
of ANNs in less than 100 iterations. Compared with GP, the convergence speed and
shape of evolving ANNs using GEP are much better; the main reason is that GP’s

A NEW ALGORITHM OF EVOLVING ARTIFICIAL NEURAL NETWORKS VIA GEP 89

genotype and phenotype are nonlinearly represented and the evolved genes sometimes
have syntax mistakes, but GEP has overcome these shortcomings and linearly repre-
sents the genotype and phenotype. Furthermore, the evolved genes are legal at any
time. Therefore, the GEP evolving algorithm has a wider application range in solving
the architectures and weights and thresholds of ANNs. We have used GEP to train
neural network ensembles to broaden its applications.

References

(1] C. Ferreira, Gene expression programming: A new adaptive algorithm for solving problems, Com-
plex Systems 13 (2001), 37-129.
[2] C. Ferreira, Function finding and the creation of numerical constants in gene expression program-

ming, 7th Online World Conference on Soft Computing in Industrial Applications, September
23-October 4, 2002.

[3] M. T. Hagan, Neural Network Design, China Machine Press, 2002.

[4] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd Edition, China Machine Press,
1998.

[8] K. Li, Z. Chen, Y. Li, and A. Zhou, An application of genetic programming on economic forecast-
ing, Proceedings of the International Conference on High Performance Computing and Applica-
tions, Z. Chen et al., eds., Springer-Verlag, Heidelberg, 2005, 71-80.

[6] K. Li, Y. Li, Z. Chen, and Z. Wu, A new dynamic evolutionary algorithm based on particle trans-
portation theory, Proceedings of the International Conference on High Performance Computing
and Applications, Z. Chen et al., eds., Springer-Verlag, Heidelberg, 2005, 81-92.

[7] K. Li, Y. Li, C. Teng, and L. Wang, Application of genetic programming on data mining, Computer
Engineering and Applications 3 (2005).

[8] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer-
Verlag, Berlin, Heidelberg and New York, 1996.

[9] Z. Pan, L. Kang, and Y. Chen, Evolutionary Computation, Tsinghua University Press, 1998.

[10] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, 87, 1423-1447, September
1999.

Kangshun Li:

SCHOOL OF INFORMATION ENGINEERING, JIANGXI UNIVERSITY OF SCIENCE & TECHNOLOGY, JIANGXI
341000, CHINA.

E-mail: 1ks@publicl.gzptt.jx.cn

Yuanxiang Li and Haifang Mo:
STATE KEY LABORATORY OF SOFTWARE ENGINEERING, WUHAN UNIVERSITY, WUHAN 430072, CHINA.

Zhangxin Chen:

CENTER FOR SCIENTIFIC COMPUTATION AND DEPARTMENT OF MATHEMATICS, SOUTHERN METHODIST
UNIVERSITY, DALLAS, TX 75275-0156 USA.
E-mail: zchen®mail.smu,edu

