• Title/Summary/Keyword: Network-based RTK

Search Result 59, Processing Time 0.017 seconds

Performance Analysis of Local Network PPP-RTK using GPS Measurements in Korea

  • Jeon, TaeHyeong;Park, Sang Hyun;Park, Sul Gee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.263-268
    • /
    • 2022
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) is a high accuracy positioning method that combines RTK and PPP to overcome the limitations on service coverage of RTK and convergence time of PPP. PPP-RTK provides correction data in the form of State Space Representation (SSR), unlike RTK, which provides measurement-based Observation Space Representation (OSR). Due to this, PPP-RTK has an advantage that it can transmit less data than RTK. So, recently, several techniques for PPP-RTK have been proposed. However, in order to utilize PPP-RTK techniques, performance analysis of these in a real environment is essential. In this paper, we implement the local network PPP-RTK and analyze the positioning performance according to the distance within 100 km from the reference station in Korea. As results of experiment, the horizontal and vertical 95% errors of local network PPP-RTK were 6.25 cm and 5.86 cm or less, respectively.

Accuracy Evaluation of the Height Determined by Network-RTK VRS Positioning (네트워크 RTK VRS 측량에 의한 표고정확도 평가)

  • Lee, Suk Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • Network-RTK GPS positioning technique based on national CORS(Continuous Operating Reference Station) and wireless internet access as like VRS and FKP was developed to overcome the limitations of traditional RTK technique. In Korea, NGII(National Geographic Information Institute) provides network-RTK service based on 51 CORS and mobile internet network. The purpose of this study is the accuracy evaluation of the height determined by GPS VRS technique based on network-RTK, So, in this study GPS VRS positioning was accomplished through 1st level BM line located at Sancheong~Jinju and $2^{nd}$ level BM line located at Geochang~Sancheong and the average error of the each BM line was calculated as 2.15cm and 1.80cm respectively. This result shows that GPS VRS height positioning can be used in $3^{rd}$ and 4th public BM leveling and also work regulation is needed to apply the GPS VRS height positioning.

Development of MATLAB GUI Based Software for Generating Multi-GNSS Network RTK MAC Correction (MATLAB GUI 기반 다중 위성군 Network RTK MAC 보정정보 생성 소프트웨어 개발)

  • Bu-Gyeom Kim;Changdon Kee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.412-417
    • /
    • 2022
  • In this paper, multi-GNSS network RTK MAC correction generation software developed based on MATLAB GUI is introduced. The software was developed as a post-processing software based on simulation data to evaluate the feasibility of an algorithm for generating correction for multi-GNSS including GPS, GLONASS, and Galileo. As a result of software operation, network RTK correction for each system of multi-GNSS is output in MATLAB file format. In this paper, to evaluate the performance of the developed software, the residual error was analyzed after applying the correction generated through the software to the user. As a result of the analysis, it was confirmed that effective network RTK correction could be generated by confirming that the residual errors of users were maintained at 10 cm or less.

Accuracy Analysis of Network RTK Surveying for Cadastral Re-survey Project (지적재조사사업에서 Network RTK 측량의 적용 정확도 분석)

  • Park, Chun Soo;Park, Ki Heon;Hong, Sung Eon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.117-123
    • /
    • 2013
  • The purpose of this research is to suggest the reasonable method of Network RTK surveying in future cadastral re-survey project through the accuracy analysis about Network RTK surveying achievement and the conventional TS-based confirmation surveying. To achieve it, we selected the experiment places and succeeded in achieving the result by Network RTK surveying about total of 307 parcel boundary point. We compared it with the result of confirmation surveying for cadastral, and it was shown that total connection errors of RMSE was ${\pm}0.1028m$ and total 48 places exceeded in the cadastral re-survey allowable error tolerance. The research suggested the practical alternatives in cadastral re-survey project after the comprehensive evaluation of those analysis results. Therefore, the author suggested development and adoptation of integrated electronic plane table surveying method. Moreover, we suggested unifying the first parcel boundary point method into the total station surveying and adopt the Network RTK surveying on the cadastral surveying inspection.

Design of Monitoring System for Network RTK (네트워크 RTK 환경에 적합한 감시 시스템 설계)

  • Shin, Mi-Young;Han, Young-Hoon;Ko, Jae-Young;Cho, Deuk-Jae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.479-484
    • /
    • 2015
  • Network RTK is a precise positioning technique using carrier phase correction data from reference stations within the network, and is constantly being researched for improved performance. However, the study for the system accuracy has been performed but system integrity research has not been done as much as system accuracy, because network RTK has been mainly used on surveying for static or kinematic positioning. In this paper, adequate monitoring system for network RTK is designed as basis research for integrity monitoring on network RTK. To this, fault tree on network RTK is analyzed, and a countermeasure is prepared to detect and identify the each fault items. Based these algorithms, monitoring system to use on central processing facility is designed for network RTK service.

Accuracy Evaluation of VRS RTK Surveys Inside the GPS CORS Network Operated by National Geographic Information Institute (국토지리정보원 VRS RTK 기준망 내부 측점 측량 정확도 평가)

  • Kim, Hye-In;Yu, Gi-Sug;Park, Kwan-Dong;Ha, Ji-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.139-147
    • /
    • 2008
  • The positioning accuracies tend to deteriorate as the distance between the rover and the reference station increases in the Real-Time Kinematic (RTK) surveys using Global Positioning System (GPS). To solve this problem, the National Geographic Information Institute (NGII) of Korea has installed Virtual Reference System (VRS), which is one of the network-based RTK systems. In this study, we conducted the accuracy tests of the VRS-RTK surveys. We surveyed 50 control points inside the NGII's GPS Continuously Operating Reference Stations (CORS) network using the VRS-RTK system, and compared the results with the published coordinates to verify the positioning accuracies. We also conducted the general RTK surveys at the same control points. The results showed that the positioning accuracy of the VRS-RTK was comparable to that of the general RTK, because the horizontal positioning accuracy was 3.1 cm while that of general RTK was 2.0 cm. Also the vertical positioning accuracy of VRS-RTK was 6.8 cm.

Correlation between the Position Accuracy of the Network RTK Rover and Quality Indicator of Various Performance Analysis Method (Network RTK 품질 분석 방법론별 성능 지표와 사용자 항법 정확도의 상관성)

  • Lim, Cheol-soon;Park, Byung-woon;Heo, Moon-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.375-383
    • /
    • 2018
  • In order to apply the Network RTK (real time kinematics) technology, which has been used for positioning of stationary points, to the navigation of vehicles, its infrastructure should provide correction data with a quality indicator that can show the expected accuracy in real time. In this paper, we analyzed various indicator generation algorithms such as I95 (ionospheric index 95) / G95 (geodetic index 95), SBI (semivariance based index) and RIU (residual interpolation uncertainty). We also applied them to the raw observables from the reference stations of National Geographic Information Institute and VRS (virtual reference station) users, and then examined its feasibility to be used as a real-time performance index of the Network RTK rover. 24 hour data analysis shows that the RIU index, which can represent the non-linearty of the correction, has the strongest correlation with the Network RTK rover accuracy. Therefore, RIU index is expected to be used as a real-time performance index of the Network RTK rover.

Accuracy Analysis of Network-RTK(VRS) for Real Time Kinematic Positioning (실시간 이동 측위 적용을 위한 Network-RTK(VRS) 정확도 분석)

  • No, Sun-Joon;Han, Joong-Hee;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.389-396
    • /
    • 2012
  • As the demand on the precise positioning for the moving objects has been increased in the various industry field, many studies have been conducted to analyze real time kinematic technique and its practical usage. The main purpose of this study is to analyze the possibility of Network-RTK(VRS) in real-time kinematic positioning. So, the accuracy analysis has been conducted by comparing the Network-RTK(VRS) position with respect to the RTK position. As a result, Network-RTK(VRS) based on kinematic positioning has centimeter level of RMS in the ideal environment compared to RTK positioning. However, when the integer ambiguities was lost, the accuracy of Network-RTK was meter level. At that time, the quality value has been changed dramatically and shows big correlation with accuracy. When the position and height quality values are within 0.1m, the RMS of the horizontal and vertical position appears better than 10cm and 20cm, respectively. However, if the quality value is over 0.1m, the RMS increases to larger than a meter. Therefore, it is recommended to check the quality value when conducting Network-RTK(VRS) kinematic positioning to get the centimeter level accuracy.

A Study on Compact Network RTK for Land Vehicles and Real-Time Test Results

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.43-52
    • /
    • 2018
  • In recent years, the need of high accuracy navigation for vehicles has increased due to the development of autonomous driving vehicles and increase in land transportation convenience. This study is performed for vehicle users to achieve a performance of centimeter-level positioning accuracy by utilizing Compact Network Real-time Kinematic (RTK) that is applicable as a national-level infrastructure. To this end, medium-baseline RTK was implemented in real time to estimate accurate integer ambiguities between reference stations for reliable generation of Network RTK correction using the linear combination of carrier-phase observations and L1/L2 pseudo-range measurements. The residual tropospheric error was estimated in real time to improve the accuracy of double-differenced integer ambiguity resolution between network configuration reference stations that have at least 30 km or longer baseline distance. In addition, C++ based software was developed to enable real-time generation and broadcasting of Compact Network RTK correction information by utilizing an accurately estimated double-differenced integer ambiguity values. As a result, the horizontal and vertical 95% accuracy was 2.5cm and 5.2cm, respectively, without performance degradation due to user's position change within the network.

Performance Comparison of VRS and FKP Network RTK User According to Baseline Length (기선 거리에 따른 VRS와 FKP 방식의 Network RTK 사용자 성능 비교)

  • Lim, Cheolsoon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.540-548
    • /
    • 2020
  • In this paper, the performances of virtual reference station (VRS) and flächen korrektur parameter (FKP) based Network real time kinematics (RTK) according to baseline length were compared and analyzed. We applied the VRS and FKP corrections for each baseline length obtained from National Geographic Information Institute Network RTK services to an FKP-supported commercial receiver and analyzed the RTK results in the range and position domains. In the case of VRS, RTK performance was degraded due to the spatial error, which increase in proportion of the baseline length. On the other hand, FKP compensates for spatial errors by using the gradients of dispersive and non-dispersive errors, so it showed stable RTK performance compared to VRS even if the baseline length increases up to 130 km. However, in the case of long baseline of 150 km or more, integer ambiguities were incorrectly fixed due to the decrease in the performance of the FKP corrections.