• 제목/요약/키워드: Network-Based Control

검색결과 4,893건 처리시간 0.03초

신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구 (A Study on the Engine/Brake integrated VDC System using Neural Network)

  • 지강훈;정광영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.

An Immune-Fuzzy Neural Network For Dynamic System

  • Kim, Dong-Hwa;Cho, Jae-Hoon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.303-308
    • /
    • 2004
  • Fuzzy logic, neural network, fuzzy-neural network play an important as the key technology of linguistic modeling for intelligent control and decision making in complex systems. The fuzzy-neural network (FNN) learning represents one of the most effective algorithms to build such linguistic models. This paper proposes learning approach of fuzzy-neural network by immune algorithm. The proposed learning model is presented in an immune based fuzzy-neural network (FNN) form which can handle linguistic knowledge by immune algorithm. The learning algorithm of an immune based FNN is composed of two phases. The first phase used to find the initial membership functions of the fuzzy neural network model. In the second phase, a new immune algorithm based optimization is proposed for tuning of membership functions and structure of the proposed model.

  • PDF

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법 (A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control)

  • 최면송
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권7호
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

EIA-709.1 Control Network Protocol을 이용한 필드버스 시스템 구현 (Implementation of a Fieldbus System Based on EIA-709.1 Control Network Protocol)

  • 최병욱;김정섭;이창희;김종배;임계영
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.594-601
    • /
    • 2000
  • EIA-709.1 Control Network Protocol is the basic protocol of LonWorks systems that is emerg-ing as a fieldbus device. In this paper the protocol is implemented by using VHDL with FPGA and C program on an Intel 8051 processor. The protocol from the physical layer to the network layer of EIA-709.1 is im-plemented in a hardware level,. So it decreases the load of the CPU for implementing the protocol. We verify the commercial feasibility of the hardware through the communication test with Neuron Chip. based on EIA-709.1 protocol which is used in industrial fields. The developed protocol based on FPGA becomes one of IP can be applicable to various industrial field because it is implemented by VHDL.

  • PDF

Intelligent Support System for Ship Steering Control System Based on Network

  • Seo, Ki-Yeol;Suh, Sang-Hyun;Park, Gyei-Kark
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.301-306
    • /
    • 2006
  • The important field of research on ship operation is related to the high efficiency of transportation, the convenience of maneuvering ships and the safety of navigation. As a way of practical application for a smart ship based on network system, this paper proposes the intelligent support system for ship steering control system based on TCP/IP and desires to testify the validity of the proposal by applying the fuzzy control model to the steering control system. As the specific study methods, the fuzzy inference was adopted to build the maneuvering models of steersman, and then the network system was implemented using the TCP/IP socket-based programming. Lastly, the miniature model steering control system combined with LIBL (Linguistic Instruction-based Learning) was designed to testify for its effectiveness.

  • PDF

A Novel Stabilizing Control for Neural Nonlinear Systems with Time Delays by State and Dynamic Output Feedback

  • Liu, Mei-Qin;Wang, Hui-Fang
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.24-34
    • /
    • 2008
  • A novel neural network model, termed the standard neural network model (SNNM), similar to the nominal model in linear robust control theory, is suggested to facilitate the synthesis of controllers for delayed (or non-delayed) nonlinear systems composed of neural networks. The model is composed of a linear dynamic system and a bounded static delayed (or non-delayed) nonlinear operator. Based on the global asymptotic stability analysis of SNNMs, Static state-feedback controller and dynamic output feedback controller are designed for the SNNMs to stabilize the closed-loop systems, respectively. The control design equations are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms to determine the control signals. Most neural-network-based nonlinear systems with time delays or without time delays can be transformed into the SNNMs for controller synthesis in a unified way. Two application examples are given where the SNNMs are employed to synthesize the feedback stabilizing controllers for an SISO nonlinear system modeled by the neural network, and for a chaotic neural network, respectively. Through these examples, it is demonstrated that the SNNM not only makes controller synthesis of neural-network-based systems much easier, but also provides a new approach to the synthesis of the controllers for the other type of nonlinear systems.

LonRF 지능형 디바이스 기반의 유비쿼터스 홈네트워크 테스트베드 개발 (Development of a LonRF Intelligent Device-based Ubiquitous Home Network Testbed)

  • 이병복;박애순;김대식;노광현
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.566-573
    • /
    • 2004
  • This paper describes the ubiquitous home network (uHome-net) testbed and LonRF intelligent devices based on LonWorks technology. These devices consist of Neuron Chip, RF transceiver, sensor, and other peripheral components. Using LonRF devices, a home control network can be simplified and most devices can be operated on LonWorks control network. Also, Indoor Positioning System (IPS) that can serve various location based services was implemented in uHome-net. Smart Badge of IPS, that is a special LonRF device, can measure the 3D location of objects in the indoor environment. In the uHome-net testbed, remote control service, cooking help service, wireless remote metering service, baby monitoring service and security & fire prevention service were realized. This research shows the vision of the ubiquitous home network that will be emerged in the near future.

신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구 (Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network)

  • 정슬;장평수;원문철;홍섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권7호
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

XACML 기반 홈 네트워크 접근제어 시스템의 설계 및 구현 (Design and Implementation of Access Control System Based on XACML in Home Networks)

  • 이준호;임경식;원유재
    • 정보처리학회논문지C
    • /
    • 제13C권5호
    • /
    • pp.549-558
    • /
    • 2006
  • 홈 네트워크가 활성화되기 위해서는 보안 서비스의 제공이 필수적이며 특히 사용자에 대한 접근제어는 안전하고 차별화 된 홈 네트워크 서비스의 제공을 가능하게 한다. 그러나 기존의 흠 네트워크 보안 기술은 접근제어를 거의 고려하지 않거나 특정 미들웨어에 종속적인 구조를 가진다. 따라서 본 논문에서는 상호 호환성 및 확장성이 뛰어난 차세대 접근제어 표준인 extensible Access Control Markup Language(XACML)를 이용하여 흠 네트워크에서 통합적인 접근제어를 제공하기 위한 방안을 제시하고 이를 바탕으로 XACML 접근제어 시스템을 설계하고 구현한다. 또한 구현된 XACML 접근제어 시스템을 OSGi기반 UPnP 프락시 시스템에 적용하여 다양한 정책에 대한 실험을 수행함으로써 기존 홈 네트워크 시스템과의 호환성을 검증하였다.