• Title/Summary/Keyword: Network system tuning

Search Result 193, Processing Time 0.026 seconds

An Auto-tuning of SRM using PID Controller (PID제어기를 사용한 SRM의 자동동조)

  • 서기영;이수흠;권순걸;문상필;이내일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.175-178
    • /
    • 2000
  • We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-centre] in various fields. First of all, in this method, initial values are determined by the Switched Reluctance Motor of system and Ziegler-Nichols method. After deciding binary strings of parents generation using by the fitness values of genetic algorithms, we perform selection, crossover and mutation to generate the descendant generation. The advantage of this method is better than the neural network and multiple regression model method in characteristic of output, and has extent of applying without limit of initial parameters.

  • PDF

A development of multi-step neural network predictive controller (다단 신경회로망 예측제어기 개발)

  • 이권순
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.8
    • /
    • pp.68-74
    • /
    • 1998
  • The neural network predictiv econtroller (NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output (NNP:neural network predictor) and the other one is for control the plant(NNC: neural network controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and predictin error. The NNP forecasts the future output based upon the current control input and the estimated control output. The input and the output data of a system and a new method using evolution strategy are used to train the NNP. A two-step NNPC is applied to control the temeprature in boiler systems. It was compared with PI controller and auto-tuning PID controller. The computer simulaton and experimental results show that the proposed method has better performances than the other method.

  • PDF

A Design of Artifical Neural Network Power System Stabilizer Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 신경망-전력계통안정화장치의 설계)

  • Park, Je-Young;Choi, Jae-Gon;Hwang, Gi-Hyun;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1177-1179
    • /
    • 1999
  • This paper presents a design of artificial neural network power system stabilizer(ANNPSS) using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses both a genetic algorithm(GA) and an evolution strategy(ES), useing the merits of two different evolutionary computations. ANNPSS shows better control performances than conventional power system stabilizer(CPSS) in three-phase fault with heavy load which is used when tuning ANNPSS. To show the robustness of the proposed ANNPSS, it is applied to damp the low frequency oscillation caused by disturbances such as three-phase fault with normal and light load. the proposed ANNPSS shows better robustness than CPSS.

  • PDF

A study on service composition for web caching on active network (액티브네트워크상의 웹 캐싱을 위한 서비스 컴포지션에 관한 연구)

  • 홍성준;이용수
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper describes an application level composition mechanism called Generic Modeling Environment(GME) for web caching on an Application Level Active Network(ALAN). Web caching on an ALAN requires the application level composition mechanism and a service composition to support adaptability for self-organization. ALAN was developed to solve the problems of the network level Active Network(AN) ALAN has the features of both AN as well as mobile agents. The efficient composition mechanism for the existing AN Projects has been supported primarily for the network level AN. Conversely, ALAN lacks support for the application level AN The existing web caching technology is inter-connected in a manually configured hierarchical tree. Since a self-organization system is intended to be adaptive, web caching for self-organization does not involve a manual configuration or any low-level tuning of the individual nodes of the entire system but requires service composition to support adapting intelligence and fault-tolerance to enable self-organization.

  • PDF

Development of Self Tuning and Adaptive Fuzzy Controller to control of Induction Motor (유도전동기 드라이브의 제어를 위한 자기동조 및 적응 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.33-42
    • /
    • 2010
  • The induction motor drive applied to field oriented control is widely used in industry applications. However, it is deceased performance and authenticity by saturation, temperature changing, disturbance and parameters changing because modeling of induction motor is nonlinear and complex. In order to control variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper proposes self tuning PI controller based on fuzzy-neural network(FNN)-PI controller that is implemented using fuzzy control, neural network, and adaptive fuzzy controller(AFC). Also, this paper proposes estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FNN-PI, AFC and ANN controller. Also, this paper proposes the anlysis results to verify the effectiveness of controller.

Design and implementation of trend analysis system through deep learning transfer learning (딥러닝 전이학습을 이용한 경량 트렌드 분석 시스템 설계 및 구현)

  • Shin, Jongho;An, Suvin;Park, Taeyoung;Bang, Seungcheol;Noh, Giseop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.87-89
    • /
    • 2022
  • Recently, as more consumers spend more time at home due to COVID-19, the time spent on digital consumption such as SNS and OTT, which can be easily used non-face-to-face, naturally increased. Since 2019, when COVID-19 occurred, digital consumption has doubled from 44% to 82%, and it is important to quickly and accurately grasp and apply trends by analyzing consumers' emotions due to the rapidly changing digital characteristics. However, there are limitations in actually implementing services using emotional analysis in small systems rather than large-scale systems, and there are not many cases where they are actually serviced. However, if even a small system can easily analyze consumer trends, it will help the rapidly changing modern society. In this paper, we propose a lightweight trend analysis system that builds a learning network through Transfer Learning (Fine Tuning) of the BERT Model and interlocks Crawler for real-time data collection.

  • PDF

Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Yoon-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.111-118
    • /
    • 2004
  • In this paper, we present a novel approach for the structure of Fuzzy Neural Network(FNN) based on wavelet function and apply this network structure to the solution of the tracking problem for mobile robots. Generally, the wavelet fuzzy model(WFM) has the advantage of the wavelet transform by constituting the fuzzy basis function(FBF) and the conclusion part to equalize the linear combination of FBF with the linear combination of wavelet functions. However, it is very difficult to identify the fuzzy rules and to tune the membership functions of the fuzzy reasoning mechanism. Neural networks, on the other hand, utilize their learning capability for automatic identification and tuning. Therefore, we design a wavelet based FNN structure(WFNN) that merges these advantages of neural network, fuzzy model and wavelet transform. The basic idea of our wavelet based FNN is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. And our network can automatically identify the fuzzy rules by modifying the connection weights of the networks via the gradient descent scheme. To verify the efficiency of our network structure, we evaluate the tracking performance for mobile robot and compare it with those of the FNN and the WFM.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

KPX's EMS Network Analysis Operation Status in Korea Power System (KPX의 한국 전력 계통에서 EMS 계통해석기능 활용실태 소개)

  • Kang, Hyung-Koo;Han, Hee-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.30-34
    • /
    • 2005
  • Due to old Toshiba EMS's database size limit and hardware old aging, KPX(Korea Power Exchange) had introduced New EMS from AREVA(old ALSTOM) in July 2002. After then KPX had committed many man power and time to normalize EMS NA(Network Analysis) functions for using real power system. At initial stage, to normalize State Estimator which is the backbone of all other NA functions and DTS(Dispatcher Training Simulator}, KPX had corrected numerous topology errors, network model errors, non-scanned and wrongly scanned SCADA measured errors. After SE function study, running test and tuning, State Estimator could finally have been run properly and stably from June 2003. Based on SE running, KPX had normalized real time Contingency Analysis, and study mode Power Flow, STNET and DTS. From early 2004, dispatchers have been trained to use NA and DTS for the purpose of stable SE running, NA operation & results reading and urgent equipment outage reviewing. EMS NA have been greatly contributed to operate real time power system stably. Above NA normal operation by KPX own efforts under the no experience of NA running, KPX made a good precedent. This paper is intended to introduce EMS NA normalization process, operation status, and etc in Korea power system operation.

  • PDF

A PMSM Driven Electric Scooter System with a V-Belt Continuously Variable Transmission Using a Novel Hybrid Modified Recurrent Legendre Neural Network Control

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.1008-1027
    • /
    • 2014
  • An electric scooter with a V-belt continuously variable transmission (CVT) driven by a permanent magnet synchronous motor (PMSM) has a lot of nonlinear and time-varying characteristics, and accurate dynamic models are difficult to establish for linear controller designs. A PMSM servo-drive electric scooter controlled by a novel hybrid modified recurrent Legendre neural network (NN) control system is proposed to solve difficulties of linear controllers under the occurrence of nonlinear load disturbances and parameters variations. Firstly, the system structure of a V-belt CVT driven electric scooter using a PMSM servo drive is established. Secondly, the novel hybrid modified recurrent Legendre NN control system, which consists of an inspector control, a modified recurrent Legendre NN control with an adaptation law, and a recouped control with an estimation law, is proposed to improve its performance. Moreover, the on-line parameter tuning method of the modified recurrent Legendre NN is derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, two optimal learning rates for the modified recurrent Legendre NN are derived to speed up the parameter convergence. Finally, comparative studies are carried out to show the effectiveness of the proposed control scheme through experimental results.