• Title/Summary/Keyword: Network science

Search Result 13,268, Processing Time 0.036 seconds

Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network and its Application to the Spirals and Sonar Pattern Classification Problems

  • Iyoda, Eduardo-Masato;Hajime Nobuhara;Kazuhiko Kawamoto;Shin′ichi Yoshida;Kaoru Hirota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.158-161
    • /
    • 2003
  • A cascade structured neural network called Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network ($\sigma$$\pi$$_{t}$-CHNN) is Proposed. It is an extended version of the Sigma-Pi Cascaded extended Hybrid Neural Network ($\sigma$$\pi$-CHNN), where the classical multiplicative neuron ($\pi$-neuron) is replaced by the translated multiplicative ($\pi$$_{t}$-neuron) model. The learning algorithm of $\sigma$$\pi$$_{t}$-CHNN is composed of an evolutionary programming method, responsible for determining the network architecture, and of a Levenberg-Marquadt algorithm, responsible for tuning the weights of the network. The $\sigma$$\pi$$_{t}$-CHNN is evaluated in 2 pattern classification problems: the 2 spirals and the sonar problems. In the 2 spirals problem, $\sigma$$\pi$$_{t}$-CHNN can generate neural networks with 10% less hidden neurons than that in previous neural models. In the sonar problem, $\sigma$$\pi$$_{t}$-CHNN can find the optimal solution for the problem i.e., a network with no hidden neurons. These results confirm the expanded information processing capabilities of $\sigma$$\pi$$_{t}$-CHNN, when compared to previous neural network models. network models.

  • PDF

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

Convolutional auto-encoder based multiple description coding network

  • Meng, Lili;Li, Hongfei;Zhang, Jia;Tan, Yanyan;Ren, Yuwei;Zhang, Huaxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1689-1703
    • /
    • 2020
  • When data is transmitted over an unreliable channel, the error of the data packet may result in serious degradation. The multiple description coding (MDC) can solve this problem and save transmission costs. In this paper, we propose a deep multiple description coding network (MDCN) to realize efficient image compression. Firstly, our network framework is based on convolutional auto-encoder (CAE), which include multiple description encoder network (MDEN) and multiple description decoder network (MDDN). Secondly, in order to obtain high-quality reconstructed images at low bit rates, the encoding network and decoding network are integrated into an end-to-end compression framework. Thirdly, the multiple description decoder network includes side decoder network and central decoder network. When the decoder receives only one of the two multiple description code streams, side decoder network is used to obtain side reconstructed image of acceptable quality. When two descriptions are received, the high quality reconstructed image is obtained. In addition, instead of quantization with additive uniform noise, and SSIM loss and distance loss combine to train multiple description encoder networks to ensure that they can share structural information. Experimental results show that the proposed framework performs better than traditional multiple description coding methods.

A Prototype Virtual Network Embedding System using OpenStack

  • Fukushima, Yukinobu;Sato, Kohei;Goda, Itsuho;Ryu, Heung-Gyoon;Yokohira, Tokumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.1
    • /
    • pp.60-65
    • /
    • 2017
  • Network virtualization enables us to make efficient use of resources in a physical network by embedding multiple virtual networks in the physical network. In this paper, we develop a prototype of a virtual network embedding system. Our system consists of OpenStack, which is an open source cloud service platform, and shell scripts. Because OpenStack does not provide a quality of service control function, we realize bandwidth reservation for virtual links by making use of the ingress policing function of Open vSwitch, which is a virtual switch used in OpenStack. The shell scripts in our system automatically construct the required virtual network on the physical network using the OpenStack command-line interface, and they reserve bandwidth for virtual links using the Open vSwitch command. Experimental evaluation confirms that our system constructs the requested virtual network and appropriately allocates node and link resources to it.

GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network

  • Park, Hae-Woong;Won, Soo-Seob;Kim, So-Jung;Song, Joo-Seok
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.1529-1532
    • /
    • 2004
  • A Mobile Ad Hoc NETwork (MANET) is a collection of wireless mobile nodes that forms a temporary network without the need for any existing network infrastructure or centralized administration. Therefore, such a network is designed to operate in a highly dynamic environment due to node mobility. In mobile ad hoc network, frequent topological changes cause routing a challenging problem and without the complete view of the network topology, establishing the shortest path from the source node to the destination node is difficult. In this paper, we suggest a routing approach which utilizes location information to setup the shortest possible path between the source node and the destination node. Location information is obtained through Global Positioning System (GPS) and this geographical coordinate information of the destination node is used by the source node and intermediate nodes receiving route request messages to determine the shortest path to the destination from current node.

  • PDF

Anonymized Network Monitoring for Intrusion Detection Systems

  • Srinivas, DB;Mohan, Sagar
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.191-198
    • /
    • 2022
  • With the ever-increasing frequency of public sector and smalls-cale industries going live on the internet in developing countries, their security of which, while crucial, is often overlooked in most cases. This is especially true in Government services, whilst essential, are poorly monitored if at all. This is due to lack of funds and personnel. Most available software which can help these organizations monitor their services are either expensive or very outdated. Thus, there is a need for any developing country to develop a networking monitoring system. However, developing a network monitoring system is still a challenge and expensive and out sourcing network monitoring system to third party is a security threat. Therefore, in this article we propose a method to anonymize network logs and outsource networking monitoring system to third-party without breach in integrity of their network logs.

Modified PSO Based Reactive Routing for Improved Network Lifetime in WBAN

  • Sathya, G.;Evanjaline, D.J.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.139-144
    • /
    • 2022
  • Technological advancements taken the health care industry by a storm by embedding sensors in human body to measure their vitals. These smart solutions provide better and flexible health care to patients, and also easy monitoring for the medical practitioners. However, these innovative solutions provide their own set of challenges. The major challenge faced by embedding sensors in body is the issue of lack of infinite energy source. This work presents a meta-heuristic based routing model using modified PSO, and adopts an energy harvesting scheme to improve the network lifetime. The routing process is governed by modifying the fitness function of PSO to include charge, temperature and other vital factors required for node selection. A reactive routing model is adopted to ensure reliable packet delivery. Experiments have been performed and comparisons indicate that the proposed Energy Harvesting and Modified PSO (EHMP) model demonstrates low overhead, higher network lifetime and better network stability.

Anomaly-Based Network Intrusion Detection: An Approach Using Ensemble-Based Machine Learning Algorithm

  • Kashif Gul Chachar;Syed Nadeem Ahsan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.107-118
    • /
    • 2024
  • With the seamless growth of the technology, network usage requirements are expanding day by day. The majority of electronic devices are capable of communication, which strongly requires a secure and reliable network. Network-based intrusion detection systems (NIDS) is a new method for preventing and alerting computers and networks from attacks. Machine Learning is an emerging field that provides a variety of ways to implement effective network intrusion detection systems (NIDS). Bagging and Boosting are two ensemble ML techniques, renowned for better performance in the learning and classification process. In this paper, the study provides a detailed literature review of the past work done and proposed a novel ensemble approach to develop a NIDS system based on the voting method using bagging and boosting ensemble techniques. The test results demonstrate that the ensemble of bagging and boosting through voting exhibits the highest classification accuracy of 99.98% and a minimum false positive rate (FPR) on both datasets. Although the model building time is average which can be a tradeoff by processor speed.

Proportional-Fair Downlink Resource Allocation in OFDMA-Based Relay Networks

  • Liu, Chang;Qin, Xiaowei;Zhang, Sihai;Zhou, Wuyang
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.633-638
    • /
    • 2011
  • In this paper, we consider resource allocation with proportional fairness in the downlink orthogonal frequency division multiple access relay networks, in which relay nodes operate in decode-and-forward mode. A joint optimization problem is formulated for relay selection, subcarrier assignment and power allocation. Since the formulated primal problem is nondeterministic polynomial time-complete, we make continuous relaxation and solve the dual problem by Lagrangian dual decomposition method. A near-optimal solution is obtained using Karush-Kuhn-Tucker conditions. Simulation results show that the proposed algorithm provides superior system throughput and much better fairness among users comparing with a heuristic algorithm.

Determinants of Writing Research According to International Standards in Web of Science Journals

  • Al Sawy, Yaser Mohammad Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.94-102
    • /
    • 2021
  • The study aimed to define all the main determinants of writing a research paper in an integrated manner within the requirements of the science network journals, by introducing scientific research and the steps of writing a research paper, starting from choosing the title to writing the abstract, identifying the research problem, questions, importance and objectives of the study, how to choose previous studies, research methodology and tools, discussion and results In addition to determining the acceptable percentage of plagiarism for science network journals, recommendations, choosing appropriate references and choosing the appropriate references, in addition to determining the acceptable percentage of plagiarism for the journals of the Network of Science, the researcher used the method of analytical investigative research to find out the axes of the study and analyze different reference citation methods to deal with different sources of information (articles-books-theses-conference works-reviews), In addition to studying the most important international programs for measuring plagiarism ratios that are accredited within the journals of the Science Network, and the study concluded that the researcher must present original and innovative results, add an integrated and logical work, take into account all the scientific conditions in the design of the research, its steps and ethics, and take into account the international standards in citing Reference, taking into account the rates of plagiarism within Web of Science journals.