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Abstract— A cascade structured neural network called Sigma-
Pi; Cascaded Hybrid Neural Network (o7;-CHNN) is proposed.
1t is an extended version of the Sigma-Pi Cascaded extended Hy-
brid Neural Network (o7-CHNN), where the classical multiplica-
tive neuron (7-neuron) is replaced by the translated multiplicative
(m¢-neuron) model. The learning algorithm of om,-CHNN is
composed of an evolutionary programming method, responsible
for determining the network architecture, and of a Levenberg-
Marquadt algorithm, responsible for tuning the weights of the
network. The o7;-CHNN is evaluated in 2 pattern classification
problems: the 2 spirals and the sonar problems. In the 2 spirals
problem, on:-CHNN can generate neural networks with 10%
less hidden neurons than that in previous neural models. In the
sonar problem, ox:-CHNN can find the optimal solution for the
problem, i.e., a network with no hidden neurons. These results
confirm the expanded information processing capabilities of om¢-
CHNN, when compared to previous neural network models.

I. INTRODUCTION

Sigma-Pi Cascaded extended Hybrid Neural Network (o7-
CHNN) [1] is the evolutionary neural architecture that can
employ both additive and multiplicative compositions, and
different activation functions in each neuron of the network.
Although o7-CHNN has been shown to perform well in
nonlinear regression problems, it uses a conventional multi-
plicative neuron (w-neuron) [2] as one of its components. It
has been shown that the w-neuron has some disadvantages
that may possibly limit its applicability in complex problems
[3]. Furthermore, or-CHNN uses a standard genetic algorithm
to search for neural architectures, which causes the learning
algorithm to perform slowly.

To overcome these 2 possibly limiting properties of om-
CHNN, an extended architecture called Sigma-Pi; Cascaded
Hybrid Neural Network (o7;-CHNN) is proposed. Instead of
using m-neuron, o7;~-CHNN uses the translated multiplicative
neuron (7mz-neuron) [3] model, which has been shown to
perform better than the 7-neuron, thus increasing the computa-
tional power of the model. Moreover, to speed up the learning
procedure, om-CHNN employs a modified version of EPNet
[4], an evolutionary algorithm specially developed to optimize
neural networks. The weights of the network are adjusted by
the Optimized Levenberg-Marquadt with Adaptive Momentum
(OLMAM) algorithm [5].

The proposed architecture is evaluated in 2 pattern classifi-
cation problems: the 2 spirals and the sonar problems. In the
spirals problem, the results show that the om-CHNN model

can achieve better performance in terms of computational cost,
reducing the number of hidden neurons in the order of 10%,
compared to that in former neural architectures. In the sonar
problem, om,-CHNN is able to find the global optimum, i.e.,
an architecture with no hidden neurons.

In section II, the gm-CHNN architecture is presented in
detail. Section III describes the learning algorithm of omy-
CHNN. Section IV shows the results obtained in the spirals
and sonar problems.

II. SIGMA-PI; CASCADED HYBRID NEURAL NETWORK
(om-CHNN)

Sigma-Pi Cascaded extended Hybrid Neural Network (o7-
CHNN) [1] model consists in architecture where the neurons
are organized in a cascaded structure, i.e., each neuron can
be connected to all of its precedent nodes (neurons and
inputs). Each neuron can employ additive or multiplicative
operators and the activation functions are chosen out of a
finite set of 8 candidate functions. Even though ¢w-CHNN
has been successfully tested in nonlinear regression problems,
it employs a classical multiplicative neuron (#-neuron) [2]
as one of its components. It has been shown that the -
neuron presents 2 properties that may limit its applicability in
complex problems [3]: (1) an excessive number of parameters
is required and (2) decision surfaces generated by 7-neuron
are always centered at the origin of its input space. These 2
properties can potentially affect the overall performance of a
om-CHNN.

To prevent these possible drawbacks, the w-neuron is re-
placed by the translated multiplicative neuron (m;-neuron)
[3], a multiplicative neuron model designed to overcome the
disadvantages of w-neuron. The resulting architecture is called
Sigma-Pi; Cascaded Hybrid Neural Network (om;-CHNN),
depicted in Fig. 1. The network in Fig. 1 is structurally similar
to the original o7-CHNN model, but the output is produced
by a cascade of additive and translated multiplicative neurons.

An additive neuron, or o-neuron, is defined by

y=r (wo + Zwipz) ,

i=1

(1)

where w;, 1 = 0,...,m, are the adjustable weights, p;, i =
1,...,m, are the neuron’s inputs, and fx(-), k € {0,...,7}is
the neuron’s activation function, chosen out of the 8 candidate
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Fig. 1. A fully connected Sigma-Pi; Cascaded Hybrid Neural Network. Each
cross represents a connection weight and each neuron can be a o-neuron or
s ¢-neuron (see (1) and (2)).

functions in Table I. The candidate functions in Table I are
the same as those used in the o7r-CHNN model.
A translated multiplicative neuron, or m;-neuron [3], is

defined by
m
y=J (b [ - ti)) ; @
i=1
where b is a scaling factor and ¢;, 1 = 1,...,m, are the
coordinates of the center of decision surface generated by the
neuron. The activation function fi(-), k € {0,...,7}, is also

cnosen out of the 8 candidates in Table 1.

TABLE 1
THE 8 CANDIDATES FOR ACTIVATION FUNCTION.

Function | Name I Expression |
fo Hyperbolic tangent fo(z) = tanh(z)
fi Logistic fi(x) = -IT::;
f2 Linear f2(z) =z
f3 Cosine f3{z) = cos(x)
fa Gaussian fa(z) =e=°
fs Mexican hat fs(z) = 2" (1 — 222)
. _J Lforz=0
fe Sinc fo(z) = { sin(z), otherwise
I Null Fo(2) = 0

The architecture shown in Fig. 1 is a fully connected o-
(CHNN. Note that not all the connections in Fig. 1 may be
necessary. Moreover, to choose appropriate activation func-
tions (from the candidate set in Table I) and aggregation type
(-7 or m¢) for each neuron in the network is not a simple task.
Therefore, a learning algorithm based on evolutionary com-
putation associated with a second order Levenberg-Marquadt
method is proposed to adjust both the architecture and weights
of a omg-CHNN.

ITII. LEARNING IN o7;-CHNN

The evolutionary part of the original ¢m-CHNN’s learning
& gorithm consists in a standard, general purpose genetic

algorithm, which causes the algorithm to run slowly. Thus,
to improve the convergence times of the learning algorithm,
a modified version of Evolutionary Programming Network
(EPNet) [4] is used to evolve om-CHNN architectures. EPNet
is specially designed to encourage fast evolution of small
neural networks that present good behavior. Because the
original EPNet evolves only classical neural networks (using
only additive neurons and a single activation function in all
the neurons), it was necessary to change some steps of EPNet
to make it capable of determining the full architecture of a
o7-CHNN. To accomplish this, 2 new mutation operators are
inserted in EPNet:

1) Node type change: this operator randomly changes, with
the uniform distribution, the type (¢ or m;) a certain
amount of neurons of the network. The probability of
changing the type of a single neuron is a user defined
parameter of the method.

2) Activation function change: this operator changes the
activation function of a certain amount of neurons of a
om-CHNN. The new activation function for a neuron
is chosen, with uniform random probability, from the
8 candidate functions in Table I. The probability of
changing the activation function of a neuron is also a
user defined parameter.

These 2 new operators are performed before node and con-
nection mutations are tried, because changing neuron types
and activation functions seem to be less disruptive for the
behaviour of a gm;-CHNN than the other mutation operators.

In the original EPNet, the weights of a network are tuned by
a combination of backpropagation and simulated annealing. To
further accelerate the learning algorithm, the weights in ory-
CHNN are adjusted by a partial training mutation algorithm,
composed of a Gaussian mutation operator combined to the
Optimized Levenberg-Marquadt with Adaptive Momentum
(OLMAM) [5] algorithm. This operator is applied as follows:

1) Train the network using OLMAM a certain number of
steps. If the network performance does not improve
significantly, then go to step 2; otherwise go to step
3. Here, when the number of correct classified patterns
increases after training, a significant improvement is
considered to have been achieved.

2) Apply a Gaussian mutation operator and train it again
using OLMAM for some epochs.

3) If network’s performance is better than before, accept
the changes; otherwise try the other mutation operators.

The OLMAM algorithm replaces the Scaled Conjugate Gra-
dient (SCG) [6] algorithm used in the original g7-CHNN.
This is because there is empirical evidence that OLMAM can
overcome local minima in a network’s error surface [5].

The codification scheme used in om-CHNN is the same
as that used in the original ¢7-CHNN [1]: each neuron is
encoded in a vector, containing information about the type of
each neuron, the activation function used, and the connections
with other neurons in the network.
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Randomly initialize population
Partial_training()
Rank-based selection
while (not termination criterion) {
if (partial_training()) not successful
if (change_node_type()) not successful
if (change_activation_function())
not successful
if (delete_node()) not successful
if (delete_connection())
not successful
add_node_connection ()
Obtain new generation
}

Further training

Fig. 2. Modified EPNet {7]. The node type change and activation function
change are new mutation operators. The partial training operator is performed
by the OLMAM {5] algorithm and the Gaussian mutation operator.
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Fig. 3. The two spirals problem.

Figure 2 depicts the om-CHNN’s learning algorithm. For
details of the other mutation operators, refer to [4].

IV. APPLICATION OF g7;-CHNN IN THE 2 SPIRALS AND
SONAR PATTERN CLASSIFICATION PROBLEMS

To evaluate the performance of om-CHNN, 2 pattern clas-
sification problems are chosen: the 2 spirals problem and the
sonar problem. These 2 problems are chosen because they
are considered difficult to solve and are commonly applied
in neural networks research, thus allowing easier comparison
with other neural architectures.

A. 2 Spirals Problem

The 2 spirals problem consists in classifying a set of points,
arranged in a spiral configuration, in 2 different classes (see
Fig. 3). Although the data for this problem are generated
artificially, it is considered hard to solve because of the
peculiar distribution of data in a 2 dimensional space. The
2 spirals problem has been widely applied as a benchmark
for neural network architectures [5][8]. The objective of this
experiment is to infer om,-CHNN’s ability of generating
complex decision surfaces and to compare it with other neural
network architectures.

TABLE 1I

RESULTS FOR THE SPIRALS PROBLEM.

. Classification Number of
Architecture Accuracy Hidden Neurons
CASCOR 100% 12
ox-CHNN 100% 12
om-CHNN 100% 11

The parameters for the learning algorithms are chosen as
follows:

o Maximum number of hidden neurons: 15

o Maximum number of generations: 1000

o Population size: 30

« Probability of node type change: 0.5

« Probability of activation function change: 0.5

o Probability of hidden node deletion: 0.3

+ Probability of hidden node addition: 0.3

« Probability of node and connection addition: 0.3
Table II shows the results obtained. The performance of o -
CHNN is compared with Cascade Correlation (CASCOR) [8]
architecture and with om-CHNN. All the considered networks
can achieve 100% of classification accuracy, but note that
o7-CHNN’s learning algorithm can generate a network that
achieves this result using less hidden neurons than the others,
confirming that the introduction of m¢-neuron can improve the
learning capabilities of a neural network.

B. Sonar Problem

The sonar problem [9] consists in classifying sonar signals
in 2 categories — metal cylinders (mines) and rocks. The
sonar problem has also been used to evaluated neural network
architectures and learning algorithms. Although this problem
is known to be linear, it is usually hard to solve it using
a conventional multilayer perceptron (MLP) with no hidden
neurons [3]. In [9], it is reported that only with the addition
of 12 hidden neurons, a MLP is able to solve this problem with
a success rate of 100%. It has been argued that the nonuniform
distribution of input data makes this problem difficult to solve
without hidden nodes. Here, the objective is to infer om;-
CHNN’s ability of finding the global optimum of a problem.

The parameters for the learning algorithms are chosen as
follows:

¢ Maximum number of hidden neurons: 3
Maximum number of generations: 100
Population size: 10
Probability of node type change: 0.5
Probability of activation function change: 0.5

¢ Probability of hidden node deletion: 0.3

o Probability of hidden node addition: 0.3

o Probability of node and connection addition: 0.3
Table III shows the results obtained. Here, all the consid-
ered architectures can perfectly solve the sonar problem,
i.e., achieve 100% of classification accuracy. Moreover, a
Multilayer Perceptron (MLP) with no hidden neurons, when
trained with OLMAM algorithm, can also solve this problem.
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TABLE III
RESULTS FOR THE SONAR PROBLEM.

, Classification Number of
Architecture Accuracy Hidden Neurons
MLP with backprop. 100% 12
MLP with OLMAM 100% 0
om-CHNN 100% 0

But note that this result was obtained with the prior knowledge
of linearity of data distribution, i.e., it was known in advance
that such an architecture would solve this problem. On the
other hand, om;-CHNN’s learning algorithm does not make
any assumption on data distribution, i.e., the learning process
1s responsible for finding an appropriate network architecture
that fits the problem at hand. This is an important property
for those problems in which it is not possible to make any
assumptions on the problem’s data distribution. Finally, note
that the learning algorithm of o@;-CHNN is able to find a
global optimum for this problem, i.e., a network with no
hidden neurons.

V. CONCLUSIONS

An extension for the Sigma-Pi Cascaded extended Hybrid
Neural Network Model (om-CHNN) [1], called Sigma-Pi,
Cascaded Hybrid Neural Network (om~CHNN), is proposed.
In om-CHNN, instead of the classical multiplicative neuron
(m-neuron), the translated multiplicative neuron (m;-neuron)
[3] is employed as one of the network components, along with
the additive neuron (o-neuron). The activation functions for
each neuron of a om;-CHNN are chosen out of 8 candidate
functions. A modified version of EPNet [4] is used to optimize
the network architecture, whereas the Optimized Levenberg-
Marquadt with Adaptive Momentum (OLMAM) [5] algorithm
is used to adjust the weights of the network. To evaluate the
capabilities of om-CHNN, the 2 spirals and sonar pattern
classification problems are used. In the 2 spirals problem, om;-
CHNN can generate neural networks with 10% less hidden
neurons than that in previous neural models, whereas an
optimal solution, i.e., a solution with no hidden neurons, is
found by om-CHNN in the sonar problem.

The results obtained in the 2 spirals problem show that
om-CHNN can generate smaller networks than previous
approaches, thus confirming that om,-CHNN has improved
representation capability, when compared to previous neural
models. Moreover, the results obtained in the sonar problem
show that the learning algorithm of om,-CHNN is capable of
finding an optimal solution for a learning problem. Therefore,
it can be concluded that om;-CHNN has the potential to be
successfully applied in challenging real world problems.

As subsequent application, om;-CHNN will be evaluated in
different application domains, such as image processing and
automatic control. For further improving the performance of
the learning algorithm, parallel implementations of evolution-
ary neural networks may be investigated. Another research
direction is to extend the proposed approach to recurrent neural
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network architectures, and apply it in the approximation of
nonstationary mappings.
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