The existing subtract image based intrusion detection system for CCTV digital images has a problem that it can not distinguish intruders from moving backgrounds that exist in the natural environment. In this paper, we tried to solve the problems of existing system by designing real - time intrusion detection system for CCTV digital image by combining subtract image based intrusion detection method and background learning artificial neural network technology. Our proposed system consists of three steps: subtract image based intrusion detection, background artificial neural network learning stage, and background artificial neural network evaluation stage. The final intrusion detection result is a combination of result of the subtract image based intrusion detection and the final intrusion detection result of the background artificial neural network. The step of subtract image based intrusion detection is a step of determining the occurrence of intrusion by obtaining a difference image between the background cumulative average image and the current frame image. In the background artificial neural network learning, the background is learned in a situation in which no intrusion occurs, and it is learned by dividing into a detection window unit set by the user. In the background artificial neural network evaluation, the learned background artificial neural network is used to produce background recognition or intrusion detection in the detection window unit. The proposed background learning intrusion detection system is able to detect intrusion more precisely than existing subtract image based intrusion detection system and adaptively execute machine learning on the background so that it can be operated as highly practical intrusion detection system.
International Journal of Computer Science & Network Security
/
제24권4호
/
pp.179-191
/
2024
With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.
Intrusion Detection System that protects system safely is necessary as network technology is developed rapidly and application division is wide. Intrusion Detection System among others can construct system without participation of other severs. But it has weakness that big load in system happens and it has low efficient because every traffics are inspected in case that mass traffic happen. In this study, Distributed Intrusion Detection System based on protocol is proposed to reduce traffic of intrusion detection system and provide stabilized intrusion detection technique even though mass traffic happen. It also copes to attack actively by providing automatic update of using rules to detect intrusion in sub Intrusion Detection System.
인터넷 사용 증가로 인한 통신망에 대한 위협은 갈수록 증대되고 있다. 이에 대한 방안으로 많은 보안장비들이 개발되어 설치되고 있으며, 침입차단시스템에 이어 근래에는 침입탐지시스템에 대한 연구와 개발이 활성화되고 있다. 그러나, 네트워크의 규모가 커지고, 관리 대상 시스템의 수가 방대해짐에 따라 현재의 단일 네트워크 단위의 관리로는 해결이 어렵다. 본 논문에서는 IETF에서 진행되고 있는 PBNM(Policy-Based Network Management) 기술을 도입하여 대규모의 네트워크의 보안을 관리하기 위한 통합 침입탐지시스템(Integrated Intrusion Detection System:IIDS)을 설계한다. 통합 침입탐지시스템은 다수의 침입탐지 에이전트로 구성되어 있으며, 시스템의 요구사항과 기능별 요소들에 대하여 기술하고 있다.
본 논문에서는 공격 횟수와 공격 유형을 모두 고려하여 차량 내 네트워크에서 해킹을 탐지하는 침입 탐지 시스템의 성능을 개선하는 기법을 제안한다. 침입 탐지 시스템에서 침입을 정상으로 잘못 인식하는 FNR(False Negative Rate)과 정상을 침입으로 잘못 인식하는 FPR(False Positive Rate)은 모두 차량의 안전에 큰 영향을 미친다. 본 논문에서는 일정 홧수 이상 공격으로 탐지된 데이터 프레임을 자동적으로 공격으로 처리하며, 자동 공격으로 판단하는 방법도 공격 유형에 따라 다르게 적용함으로서 FNR과 FPR을 모두 개선하는 침입 탐지 기법을 제안하였다. 시뮬레이션 결과 제안하는 기법은 DoS(Denial of Service) 공격과 Spoofing 공격에서 FNR과 FPR을 효과적으로 개선할 수 있었다.
As the importance and the need for network security are increased, many organizations use the various security systems. They enable to construct the consistent integrated security environment by sharing the network vulnerable information among IDS (Intrusion Detection System), firewall and vulnerable scanner. The multiple IDSes coordinate by sharing attacker's information for the effective detection of the intrusion is the effective method for improving the intrusion detection performance. The system which uses BBA (Blackboard Architecture) for the information sharing can be easily expanded by adding new agents and increasing the number of BB (Blackboard) levels. Moreover the subdivided levels of blackboard enhance the sensitivity of the intrusion detection. For the simulation, security models are constructed based on the DEVS (Discrete Event system Specification) formalism. The intrusion detection agent uses the ES (Expert System). The intrusion detection system detects the intrusions using the blackboard and the firewall responses to these detection information.
This paper reviews and assesses the analogy between the human immune system and network intrusion detection systems. The promising results from a growing number of proposed computer immune models for intrusion detection motivate this work. The paper begins by briefly introducing existing intrusion detection systems (IDS's). A set of general requirements for network-based IDS's and the design goals to satisfy these requirements are identified by a careful examination of the literature. An overview of the human immune system is presented and its salient features that can contribute to the design of competent network-based IDS's are analysed. The analysis shows that the coordinated actions of several sophisticated mechanisms of the human immune system satisfy all the identified design goals. Consequently, the paper concludes that the design of a network-based IDS based on the human immune system is promising for future network-based IDS's
With remarkable growth of using Internet, attempts to try intrusions on network are now increasing. Intrusion Detection System is a security system which detects and copes illegal intrusions. Especially with increasing dispersive attacks through network, concerns for this Distributed Intrusion Detection are also rising. The previous Intrusion Detection System has difficulty in coping cause it detects intrusions only on particular network and only same segment. About same attacks, system lacks capacity of combining information and related data. Also it lacks cooperations against intrusions. Systematic and general security controls can make it possible to detect intrusions and deal with intrusions and predict. This paper considers Distributed Intrusion Detection preventing attacks and suggests the way sending active packets between nodes safely and performing in corresponding active node certainly. This study suggested improved E-IDS system which prevents service attacks and also studied sending messages safely by encoding. Encoding decreases security attacks in active network. Also described effective ways of dealing intrusions when misuses happens thorough case study. Previous network nodes can't deal with hacking and misuses happened in the middle nodes at all, cause it just encodes ends. With above suggested ideas, problems caused by security services can be improved.
Network based intrusion detection system is a computer network security tool. In this paper, we present an intrusion detection system based on Self-Organizing Maps (SOM) and Resilient Propagation Neural Network (RPROP) for visualizing and classifying intrusion and normal patterns. We introduce a cluster matching equation for finding principal associated components in component planes. We apply data from The Third International Knowledge Discovery and Data Mining Tools Competition (KDD cup'99) for training and testing our prototype. From our experimental results with different network data, our scheme archives more than 90 percent detection rate, and less than 5 percent false alarm rate in one SYN flooding and two port scanning attack types.
컴퓨터와 네트워크의 비약적인 발전은 다양한 정보 교환을 쉽게 하였다. 하지만, 그와 동시에 다양한 위험 요소를 발생시켜 악의적 목적을 가진 사용자와 그룹은 취약한 시스템을 대상으로 공격을 하고 있다. 침입탐지시스템은 네트워크 패킷 분석을 통해 악의적인 행위를 탐지한다. 하지만, 많은 양의 패킷을 짧은 시간 내에 처리해야 하는 부담이 있다. 따라서, 이 문제를 해결하기 위하여 우리는 User Level에서 동작하는 네트워크 침입탐지시스템의 탐지 성능 향상을 위해 Kernel Level에서 동작하는 시스템을 제안한다. 실제로, kernel level에서 동작하는 네트워크 침입탐지시스템을 구현함으로써 패킷 분석 및 탐지 성능을 향상함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.