• Title/Summary/Keyword: Network energy consumption

Search Result 1,159, Processing Time 0.027 seconds

Energy Efficient IDS Node Distribution Algorithm using Minimum Spanning Tree in MANETs

  • Ha, Sung Chul;Kim, Hyun Woo
    • Smart Media Journal
    • /
    • v.5 no.4
    • /
    • pp.41-48
    • /
    • 2016
  • In mobile ad hoc networks(MANETs), all the nodes in a network have limited resources. Therefore, communication topology which has long lifetime is suitable for nodes in MANETs. And MANETs are exposed to various threats because of a new node which can join the network at any time. There are various researches on security problems in MANETs and many researches have tried to make efficient schemes for reducing network power consumption. Power consumption is necessary to secure networks, however too much power consumption can be critical to network lifetime. This paper focuses on energy efficient monitoring node distribution for enhancing network lifetime in MANETs. Since MANETs cannot use centralized infrastructure such as security systems of wired networks, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method to cover all the nodes in a network and enhance the network lifetime. Simulation results show that the proposed algorithm has better performance in comparison with the existing algorithms.

Lifetime Improvement of WSN by Optimizing Cluster Configuration (클러스터 구성 최적화를 통한 무선 센서 네트워크 수명 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.117-121
    • /
    • 2018
  • A Wireless Sensor Network is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy, such as batteries. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

Cluster Head Chain Routing Protocol suitable for Wireless Sensor Networks in Nuclear Power Plants (원전 무선 센서 네트워크에 적합한 클러스터 헤드 체인 라우팅 프로토콜)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Nuclear power plants have a lower cost of power generation, and they are more eco-friendly than other power generation plants. Also, we need to prepare nuclear plant accidents because of their severe damage. In the event of a safety accident, such as a radiation leak, by applying a wireless sensor network to a nuclear power plant, many sensor nodes can be used to monitor radiation and transmit information to an external base station to appropriately respond to the accident. However, applying a wireless sensor network to nuclear power plants requires routing protocols that consider the sensor network size and bypass obstacles such as plant buildings. In general, the hierarchical-based routing protocols are efficient in energy consumption. In this study, we look into the problems that may occur if hierarchical-based routing protocols are applied to nuclear power plants and propose improved routing protocols to solve these problems. Simulation results show that the proposed routing protocol is more effective in energy consumption than the existing LEACH protocol.

Bio-Inspired Energy Efficient Node Scheduling Algorithm in Wireless Sensor Networks (무선 센서 망에서 생체 시스템 기반 에너지 효율적인 노드 스케쥴링 기법)

  • Son, Jae-Hyun;Shon, Su-Goog;Byun, Hee-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.528-534
    • /
    • 2013
  • The energy consumption problem should be taken into consideration in wireless sensor network. Many studies have been proposed to address the energy consumption and delay problem. In this paper, we propose BISA(Bio-inspired Scheduling Algorithm) to reduce the energy consumption and delay in wireless sensor networks based on biological system. BISA investigates energy-efficient routing path and minimizes the energy consumption and delay using multi-channel for data transmission by multiplexing data transmission path. Through simulation, we confirm that the proposed scheme guarantees the efficient energy consumption and delay requirement.

Energy Efficient Selection Scheme for Multiple Wireless Network Interfaces of Mobile Devices (다중 무선 네트워크 휴대 장치를 위한 에너지 효율적인 네트워크 인터페이스 선택 기법)

  • Kim, Bong-Jae;Min, Hong;Gu, Bon-Chul;Jung, Jin-Man;Cho, Yoo-Kun;Heo, Jun-Young;Hong, Ji-Man
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1194-1198
    • /
    • 2010
  • Recent mobile devices have multiple wireless network interfaces. Therefore, we can use a more 'energy efficient network interface for reducing energy consumption' according to the network environment without depending on a specific network interface. In this paper, we propose an energy efficient wireless network interface selection scheme for mobile devices with multiple wireless network interfaces. The proposed scheme selects a more energy efficient network interface for data communication by using polling. Also, we show that our scheme is more efficient in terms of energy consumption.

Cautious View on Network Coding - From Theory to Practice

  • Heide, Janus;Pedersen, Morten V.;Fitzek, Frank H.P.;Larsen, Torben
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.403-411
    • /
    • 2008
  • Energy consumption has been mostly neglected in network coding (NC) research so far. This work investigates several different properties of NC that influence the energy consumption and thus are important when designing NC systems for battery-driven devices. Different approaches to the necessary implementation of coding operations and Galois fields arithmetic are considered and complexity expressions for coding operations are provided. We also benchmark our own mobile phone implementation on a Nokia N95 under different settings. Several NC strategies are described and compared, furthermore expressions for transmission times are developed. It is also shown that the use of NC introduces a trade off between reduction in transmission time and increase in energy consumption.

Energy Efficient Sequential Sensing in Multi-User Cognitive Ad Hoc Networks: A Consideration of an ADC Device

  • Gan, Xiaoying;Xu, Miao;Li, He
    • Journal of Communications and Networks
    • /
    • v.14 no.2
    • /
    • pp.188-194
    • /
    • 2012
  • Cognitive networks (CNs) are capable of enabling dynamic spectrum allocation, and thus constitute a promising technology for future wireless communication. Whereas, the implementation of CN will lead to the requirement of an increased energy-arrival rate, which is a significant parameter in energy harvesting design of a cognitive user (CU) device. A well-designed spectrum-sensing scheme will lower the energy-arrival rate that is required and enable CNs to self-sustain, which will also help alleviate global warming. In this paper, spectrum sensing in a multi-user cognitive ad hoc network with a wide-band spectrum is considered. Based on the prospective spectrum sensing, we classify CN operation into two modes: Distributed and centralized. In a distributed network, each CU conducts spectrum sensing for its own data transmission, while in a centralized network, there is only one cognitive cluster header which performs spectrum sensing and broadcasts its sensing results to other CUs. Thus, a wide-band spectrum that is divided into multiple sub-channels can be sensed simultaneously in a distributed manner or sequentially in a centralized manner. We consider the energy consumption for spectrum sensing only of an analog-to-digital convertor (ADC). By formulating energy consumption for spectrum sensing in terms of the sub-channel sampling rate and whole-band sensing time, the sampling rate and whole-band sensing time that are optimal for minimizing the total energy consumption within sensing reliability constraints are obtained. A power dissipation model of an ADC, which plays an important role in formulating the energy efficiency problem, is presented. Using AD9051 as an ADC example, our numerical results show that the optimal sensing parameters will achieve a reduction in the energy-arrival rate of up to 97.7% and 50% in a distributed and a centralized network, respectively, when comparing the optimal and worst-case energy consumption for given system settings.

An Energy Consumption Model using Two-Tier Clustering in Mobile Sensor Networks (모바일 센서 네트워크에서 2계층 클러스터링을 이용한 에너지 소비 모델)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.9-16
    • /
    • 2016
  • Wireless sensor networks (WSN) are composed of sensor nodes and a base station. The sensor nodes deploy a non-accessible area, receive critical information, and transmit it to the base station. The information received is applied to real-time monitoring, distribution, medical service, etc.. Recently, the WSN was extended to mobile wireless sensor networks (MWSN). The MWSN has been applied to wild animal tracking, marine ecology, etc.. The important issues are mobility and energy consumption in MWSN. Because of the limited energy of the sensor nodes, the energy consumption for data transmission affects the lifetime of the network. Therefore, efficient data transmission from the sensor nodes to the base station is necessary for sensing data. This paper, proposes an energy consumption model using two-tier clustering in mobile sensor networks (TTCM). This method divides the entire network into two layers. The mobility problem was considered, whole energy consumption was decreased and clustering methods of recent researches were analyzed for the proposed energy consumption model. Through analysis and simulation, the proposed TTCM was found to be better than the previous clustering method in mobile sensor networks at point of the network energy efficiency.

Study of Efficient Energy Management for Ubiquitous Sensor Networks with Optimization of the RF power (전송전력 최적화를 통한 센서네트워크의 효율적인 에너지관리에 대한 연구)

  • Eom, Heung-Sik;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • This paper reconsiders established power conservation models for ubiquitous sensor networks that use relay nodes instead of direct communication and proposes novel network power consumption model with consideration of the channel level and radio chip level simultaneously. We estimate the effect of minimum hop-count policy in terms of network power consumption through simulation of various situations for low power RF module CC2420. It is observed that maximum RF power and minimum hop-count results in lower energy consumption relatively. Also, in total network energy consumption, which is included re-transmission, minimum hop count policy presents decrease by 33.1% of energy consumption in compare with the conventional model.

EETCA: Energy Efficient Trustworthy Clustering Algorithm for WSN

  • Senthil, T.;Kannapiran, Dr.B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5437-5454
    • /
    • 2016
  • A Wireless Sensor Network (WSN) is composed of several sensor nodes which are severely restricted to energy and memory. Energy is the lifeblood of sensors and thus energy conservation is a critical necessity of WSN. This paper proposes a clustering algorithm namely Energy Efficient Trustworthy Clustering algorithm (EETCA), which focuses on three phases such as chief node election, chief node recycling process and bi-level trust computation. The chief node election is achieved by Dempster-Shafer theory based on trust. In the second phase, the selected chief node is recycled with respect to the current available energy. The final phase is concerned with the computation of bi-level trust, which is triggered for every time interval. This is to check the trustworthiness of the participating nodes. The nodes below the fixed trust threshold are blocked, so as to ensure trustworthiness. The system consumes lesser energy, as all the nodes behave normally and unwanted energy consumption is completely weeded out. The experimental results of EETCA are satisfactory in terms of reduced energy consumption and prolonged lifetime of the network.