• Title/Summary/Keyword: Network architecture

Search Result 3,677, Processing Time 0.032 seconds

A Study on Improving the Storm and Wind Damage Management System of Coastal Cities (연안도시 풍수해 관리체계 개선방안에 관한 연구)

  • Oh, Sang-Baeg;Lee, Han-Seok
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.209-218
    • /
    • 2019
  • Coastal cities suffer a great deal of storm and wind damage. The storm and wind characteristics vary between cities. Therefore, a storm and wind damage management system suited for specific characteristics is required for each coastal city. In this study, we analyze the current situation and establish the problem of storm and wind damage management system in regards to urban management, coastal management and disaster management. We also review the storm and wind damage management system for the USA and Japan. We consequently propose a plan to improve the storm and wind damage management system. As a result of the study, in terms of city management, we recommend the compulsory identification of disaster prevention districts, implementation of the integrated coastal city management plan, designation of natural disaster risk mitigation area as disaster prevention district, the division of disaster prevention district into wind damage prevention district, storm damage prevention district, erosion damage prevention district, the building of restrictions at the disaster prevention district by ordinance, etc. In regards to coastal management, we suggest the delegation of authority to delegate coastal erosion management area to the local government, the subdivision of coastal erosion management area into erosion serious area, erosion progress area, erosion concern area, the building restrictions at coastal erosion management area by ordinance, development of erosion prediction chart, etc. In relation to disaster management, we recommend the integration of "countermeasures against natural disasters act" and "disasters and safety management basic act", the local government-led disaster prevention system, the local disaster management network, and the customized local disaster prevention plan, etc.

Achievements and Tasks of Korea-Japan Geophysical Exploration through Burial mounds Exploration (고분 탐사를 통해 본 한·일 물리탐사의 성과와 과제)

  • Shin, Jong woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.74-93
    • /
    • 2015
  • Geophysical survey of Korea was introduced in Nara National Research Institute of Cultural Heritage in 1995. At that time, it has been activated geophysical survey of architecture and civil engineering in Korea. But there was no exploration experts to be combined the archaeology. For this reason, National Research Institute of Cultural Heritage has introduced the physical exploration. Through the expert exchanges South Korea and Japan carried out joint exploration. And it has increased the reliability of the exploration method and exploration results. It is GPR the most method commonly in geophysical exploration. There are many usability before excavation because of good resolution. However, the shallow GPR penetration depth has limitations in large mounds. We were able to take advantage of the resistivity analysis program to study the underground structure to deep through the experts exchange. We was able to get a good result that overcomes the limitations of GPR exploration in a number of burial mounds including Naju bokamri by the resistivity analysis program. In particular, we confirmed the location of the burial main body by compares the results of exploration and excavation results. In the future we will perform a convergence research of exploration and archaeology through a variety of joint research. In addition we will have to build a new network of archaeological science.

Spatial Conservation Prioritization Considering Development Impacts and Habitat Suitability of Endangered Species (개발영향과 멸종위기종의 서식적합성을 고려한 보전 우선순위 선정)

  • Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.2
    • /
    • pp.193-203
    • /
    • 2021
  • As endangered species are gradually increasing due to land development by humans, it is essential to secure sufficient protected areas (PAs) proactively. Therefore, this study checked priority conservation areas to select candidate PAs when considering the impact of land development. We determined the conservation priorities by analyzing four scenarios based on existing conservation areas and reflecting the development impact using MARXAN, the decision-making support software for the conservation plan. The development impact was derived using the developed area ratio, population density, road network system, and traffic volume. The conservation areas of endangered species were derived using the data of the appearance points of birds, mammals, and herptiles from the 3rd National Ecosystem Survey. These two factors were used as input data to map conservation priority areas with the machine learning-based optimization methodology. The result identified many non-PAs areas that were expected to play an important role conserving endangered species. When considering the land development impact, it was found that the areas with priority for conservation were fragmented. Even when both the development impact and existing PAs were considered, the priority was higher in areas from the current PAs because many road developments had already been completed around the current PAs. Therefore, it is necessary to consider areas other than the current PAs to protect endangered species and seek alternative measures to fragmented conservation priority areas.

A Study on the Land-Use Related Assessment Factors in Korean Environmental Impact Assessment (환경영향평가 토지환경 분야의 토지이용 평가항목 고찰 연구)

  • Park, Sang-Jin;Lee, Dong Kun;Jeong, Seulgi
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.297-304
    • /
    • 2021
  • The environmental impact assessment(EIA) project in Korea has undergone changes and revisions in various evaluation items for about 30 years after the introduction of the Environmental Conservation Act (1997). However, despite the importance of land use evaluation items under the current EIA Act, there are insufficient studies to consider. Therefore, this study focused on the land-use evaluation items based on the EIA guidelines, reviewed 90 of the evaluation documents and consultation documents, and tried to suggest implications and supplementary points forthe domestic EIA land-use evaluation items. As a result, the paradigm was changing from land efficiency centered on development in the past to land efficiency centered on the natural environment and resource conservation. However, in spite of the manual for fitting the paradigm change, opinions on the conservation of the natural environment are still being drawn in the consultation document, so it needs improvement. Two improvements in the impact assessment process suggested in this study are the establishment of standardized spatial data and a quantitative impact and reduction method evaluation tool based on it. In particular, there is a need for a plan evaluation tool for land use arrangement and distribution that can solve the needs of minimizing damage to the natural environment and securing green space and a green network.

A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control (확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크)

  • Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.

Delayed offloading scheme for IoT tasks considering opportunistic fog computing environment (기회적 포그 컴퓨팅 환경을 고려한 IoT 테스크의 지연된 오프로딩 제공 방안)

  • Kyung, Yeunwoong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.89-92
    • /
    • 2020
  • According to the various IoT(Internet of Things) services, there have been lots of task offloading researches for IoT devices. Since there are service response delay and core network load issues in conventional cloud computing based offloadings, fog computing based offloading has been focused whose location is close to the IoT devices. However, even in the fog computing architecture, the load can be concentrated on the for computing node when the number of requests increase. To solve this problem, the opportunistic fog computing concept which offloads task to available computing resources such as cars and drones is introduced. In previous fog and opportunistic fog node researches, the offloading is performed immediately whenever the service request occurs. This means that the service requests can be offloaded to the opportunistic fog nodes only while they are available. However, if the service response delay requirement is satisfied, there is no need to offload the request immediately. In addition, the load can be distributed by making the best use of the opportunistic fog nodes. Therefore, this paper proposes a delayed offloading scheme to satisfy the response delay requirements and offload the request to the opportunistic fog nodes as efficiently as possible.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

A Vision Transformer Based Recommender System Using Side Information (부가 정보를 활용한 비전 트랜스포머 기반의 추천시스템)

  • Kwon, Yujin;Choi, Minseok;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.119-137
    • /
    • 2022
  • Recent recommendation system studies apply various deep learning models to represent user and item interactions better. One of the noteworthy studies is ONCF(Outer product-based Neural Collaborative Filtering) which builds a two-dimensional interaction map via outer product and employs CNN (Convolutional Neural Networks) to learn high-order correlations from the map. However, ONCF has limitations in recommendation performance due to the problems with CNN and the absence of side information. ONCF using CNN has an inductive bias problem that causes poor performances for data with a distribution that does not appear in the training data. This paper proposes to employ a Vision Transformer (ViT) instead of the vanilla CNN used in ONCF. The reason is that ViT showed better results than state-of-the-art CNN in many image classification cases. In addition, we propose a new architecture to reflect side information that ONCF did not consider. Unlike previous studies that reflect side information in a neural network using simple input combination methods, this study uses an independent auxiliary classifier to reflect side information more effectively in the recommender system. ONCF used a single latent vector for user and item, but in this study, a channel is constructed using multiple vectors to enable the model to learn more diverse expressions and to obtain an ensemble effect. The experiments showed our deep learning model improved performance in recommendation compared to ONCF.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.