• Title/Summary/Keyword: Network Reliability

Search Result 1,854, Processing Time 0.035 seconds

A Study on the Topology Design Algorithm for Common Channel Signalling Network (공통선 신호망의 토폴로지 설계 알고리즘에 관한 연구)

  • 이준호;김중규;이상배;박민용
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.369-381
    • /
    • 1991
  • In this paper, design algorithms for SMP(Single Mated Pair) and MMP (Multipli Mated Pair) structure of CCS (Common Channel Signaling) network are proposed through the study of the structure of CCS network. High reliability and fast messagy transfer time are the most important requirements for the CCS network. Based on it, three parameters such as monotraffic, reliability (maximum isolated SP(Signalling Point) number when any two STP(Signalling Transfer Points) fail and total network cost are defined. And the proposed algorithms different from preexisted algorithm that minimizes total network cost, maximize monotraffic with two constraints, reliability and total network cost. Comparing the experimental results of the proposed algorithms with those of the preexisted algorithm that minimizes total network cost, shows that the proposed algorithms produce a more reliable topology that has more monotraffic and a little higher total network cost. Additionaly, with the results of the proposed algorithms, SMP and MMP structures are compared.

  • PDF

A Model for Seismic Reliability Assessment of Electric Power Transmission Network System (지진 재해에 대한 전력 송전 네트워크 시스템의 신뢰성 평가 모형)

  • 고현무;김영호;박원석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.93-102
    • /
    • 2003
  • A technique for the seismic reliability evaluation of electric power transmission network system(EPTS) was developed to evaluate reliability indices corresponding to the whole network system and to each node within. A network model with nodes and links for EPTS was established, and a seismic substation fragility curve obtained from seismic fragilities of power system facilities was derived. A point source model, the doubly truncated Gutenberg-Richter relationship, and earthquake intensity attenuation formula was applied to simulate seismic events. Using Monte-Carlo simulation method, the seismic reliability of EPTS was evaluated and, it appeared that seismic effect on EPTS of korea has to be considered.

An Application of Network Autocorrelation Model Utilizing Nodal Reliability (집합점의 신뢰성을 이용한 네트워크 자기상관 모델의 연구)

  • Kim, Young-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.492-507
    • /
    • 2008
  • Many classical network analysis methods approach networks in aspatial perspectives. Measuring network reliability and finding critical nodes in particular, the analyses consider only network connection topology ignoring spatial components in the network such as node attributes and edge distances. Using local network autocorrelation measure, this study handles the problem. By quantifying similarity or clustering of individual objects' attributes in space, local autocorrelation measures can indicate significance of individual nodes in a network. As an application, this study analyzed internet backbone networks in the United States using both classical disjoint product method and Getis-Ord local G statistics. In the process, two variables (population size and reliability) were applied as node attributes. The results showed that local network autocorrelation measures could provide local clusters of critical nodes enabling more empirical and realistic analysis particularly when research interests were local network ranges or impacts.

  • PDF

Reliability Evaluation of a Capacitated Two-Terminal Network (내용을 고려한 무방향 네트워크의 신뢰도 계산)

  • 최명호;윤덕균
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.12 no.20
    • /
    • pp.47-53
    • /
    • 1989
  • This paper presents an algorithm CAPFACT to evaluate the reliability of a capacitated two terminal network such as a communication network, a power distribution network, and a pipeline network. The network is good(working) if and only if it is possible to transmit successfully the required system capacity from one specified terminal to the other. This paper defines new Capacitated series-parallel reduction to be applied to a series-parallel structure of the network. New Capacitated factoring method is applied to a non-series-parallel structure. The method is based on the factoring theorem given by Agrawal and Barlow. According to the existing studies on the reliability evaluation of the network that the capacity is not considered, the factoring method using reduction is efficient. The CAPFACT is more efficient than Aggarwal algorithm which enumerated and combined the paths. The efficiency is proved by the result of testing the number of operations and cpu time on FORTRAN compiler of VAX-11/780 at Hanyang University.

  • PDF

A Study on the Development of Reliability Modeling in Machine Parts (기계류 부품 신뢰성 모델링에 관한 연구)

  • 하성도;이두영
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.223-230
    • /
    • 2000
  • This work aims to develop modeling methodology of machine part reliability. The reliability model is to be used for predicting and improving reliability in planning and design processes of products. In order to develop the reliability model of machine parts, the functions and interactions of sub-units of machine parts are analyzed first and function network is constructed. Using the function network, function block diagram is developed, which can be the basis for deriving reliability block diagram. Modeling of machine part reliability has not been widely studied since the reliability modeling of machine parts requires understanding of the functions and failures of their components in several viewpoints. This work tries to find general methodology of reliability modeling and proposes a framework for reliability improvement during machine part development.

  • PDF

A Reliability Computational Algorithm for Reliability Block Diagram Using Factoring Method (팩토링 기법을 이용한 신뢰성 구조도의 신뢰도 계산 알고리즘)

  • Lie, Chang-Hoon;Kim, Myung-Gyu;Lee, Sang-Cheon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.3
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, two reliability computational algorithms which respectively utilize a factoring method are proposed for a system represented by reliability block diagram. First, vertex factoring algorithm is proposed. In this algorithm, a reliability block diagram is considered as a network graph with vertex reliabilities. Second algorithm is mainly concerned with conversion of a reliabilities block diagram into a network graph with edge reliabilities. In this algorithm, the independence of edges is preserved by eliminating replicated edges, and in computing the reliability of a converted network graph, existing edge factoring algorithm is applied. The efficiency of two algorithms are compared for example systems with respect to computing times. The results shows that the second algorithm is shown to be more efficient than the first algorithm.

  • PDF

A Bayesian network based framework to evaluate reliability in wind turbines

  • Ashrafi, Maryam;Davoudpour, Hamid;Khodakarami, Vahid
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.543-553
    • /
    • 2016
  • The growing complexity of modern technological systems requires more flexible and powerful reliability analysis tools. Existing tools encounter a number of limitations including lack of modeling power to address components interactions for complex systems and lack of flexibility in handling component failure distribution. We propose a reliability modeling framework based on the Bayesian network (BN). It can combine historical data with expert judgment to treat data scarcity. The proposed methodology is applied to wind turbines reliability analysis. The observed result shows that a BN based reliability modeling is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, BN provides performing several inference approaches such as smoothing, filtering, what-if analysis, and sensitivity analysis for considering system.

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

Designing of Dynamic Sensor Networks based on Meter-range Swarming Flight Type Air Nodes

  • Kang, Chul-Gyu;Kim, Dae-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.625-628
    • /
    • 2011
  • Dynamic sensor network(DSN) technology which is based on swarming flight type air node offers analyzed and acquired information on target data gathered by air nodes in rotation flight or 3 dimension array flight. Efficient operation of dynamic sensor network based on air node is possible when problems of processing time, data transmission reliability, power consumption and intermittent connectivity are solved. Delay tolerant network (DTN) can be a desirable alternative to solve those problems. DTN using store-and-forward message switching technology is a solution to intermittent network connectivity, long and variable delay time, asymmetric data rates, and high error rates. However, all processes are performed at the bundle layer, so high power consumption, long processing time, and repeated reliability technique occur. DSN based on swarming flight type air node need to adopt store-and-forward message switching technique of DTN, the cancelation scheme of repeated reliability technique, fast processing time with simplified layer composition.

Bounds for Network Reliability

  • Jeong, Mi-Ok;Lim, Kyung-Eun;Lee, Eui-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • A network consisting of a set of N nodes and a set of links is considered. The nodes are assumed to be perfect and the states of links to be binary and associated to each other. After defining a network structure function, which represents the state of network as a function of the states of links, we obtain some lower and upper bounds on the network reliability by adopting minmax principle and minimal path and cut set arguments. These bounds are given as functions of the reliabilities of links. The bridge network is considered as an example.

  • PDF