Journal of the Economic Geographical Society of Korea
Vol 11, No.3, 2008(492~507)

An Application of Network Autocorrelation Model
Utilizing Nodal Reliability

Youngho Kim*

Abstract . Many classical network analysis methods approach networks in aspatial
perspectives. Measuring network reliability and finding critical neodes in particular, the
analyses consider only network connection topelogy ignoring spatial components in the
network such as node attributes and edge distances. Using lecal network autocorrelation
measure, this study handles the problem. By quantifying similarity or clustering of
individual objects’ attributes in space, local autocorrelation measures can indicate
significance of individual nodes in a network. As an application, this study analyzed
internet backbone networks in the United States using both classical disjoint product
method and Getis-Ord local G statistics. In the process, two variables (population size and
reliability) were applied as node attributes. The results showed that local network
autocorrelation measures could provide local clusters of critical nodes enabling more
empirical and realistic analysis particularly when research interests were local network

ranges or impacts.
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1. Introduction

It is well known that network reliability is
presented by ability of nodes, links, and their
stable connectivity (Agrawal and Barlow 1984). In
a telecommunication network, where the nodes
are interconnected through links, the nodal ability
to communicate to each other is considered as the
most important factor for evaluating network

performance. The nodal ability is commonly
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presented as reliability in a network and can be
considered as a valuable measure to assess the
significance of network components such as city
nodes or linkages (Barlow and Proschan 1975;
Shier 1991). The reliability provides a probability
that network components are vulnerable or
tolerant to various types of failures. In general,
higher reliabilities presents more critical nodes and
vice versa. Overall, the measure of reliability can

be used to identify critical components in a given
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network or any flow system (Agrawal and Barlow
1984; Colbourn 1999). For example, a node with
high reliability can be considered as a critical node
in a network.

Even though literature uses a measure of node
reliability to represent critical node in a given
network, this study identifies critical nodes in an
alternative way by adopting local spatial (network)
autocorrelation measures. Being applied to a
network, a term, network autocorrelation measure,
is used instead of spatial autocorrelation in this
study. This study applies network autocorrelation
measures, and the use of network autocorrelation
in finding critical nodes has contribution to
literature. First, network autocorrelation enables
spatial network analyses. Classical methods in
finding critical nodes are can be considered as
aspatial network analyses because they consider
only network connection topology (Black and
Thomas 1998). However, network autocorrelation
accounts for spatial components, such as location
attributes and edge distance, in finding critical
nodes. Many real-world networks such as
electricity, internet, communication, and
transportation networks have various quantifiable
node attributes (e.g size of population} and edge
distances. Network autocorrelation measures can
take these node and edge attributes into account
enabling realistic spatial analyses.

Second, the use of local network autocorrelation
measures enables to find individual critical nodes,
which can make significant local impact on a
network. The network autocorrelation concerns
the influence on values associated with a node on
other nodes, which are inter-connected. Network
autocorrelation (as a subcategory of spatial

autocorrelation) can be divided into global and

local autocorrelation. Global autocorrelation
measures include Moran's I (Moran 1948) and its
variants, which provide a single value of the
overall spatial patterns of a study area. Local
autocorrelation measures quantify similarity or
clustering of individual spatial objects in study area
(for detail, see Anselin 1995; Fotheringham and
Brunsdon 1999). Naturally, local autocorrelation
values point out significance of individual nodes in
a network indicating which nodes are more critical
than others rather than providing a single value for
a study area.

Third, given the lack of literature about network
autocorrelation, this study supplements literature.
Even though the concept of network
autocorrelation has potential applicability for
network analyses, its use has been quite limited in
literature. In particular, some studies applied
network autocorrelation in the analyses (Black
1992; Black and Thomas 1998; Neville et al. 2004;
Xu and Sui 2007). However, these studies used
global spatial autocorrelation measures rather than
local measures causing limitations in providing
critical nodes in network. By applying local
measures, this study overcomes the limitation and
contributes to literature.

This study aims to present relative advantages
(and disadvantages) of wusing network
autocorrelation models in finding critical nodes in
a network analysis. For this purpose, this study
applied internet backbone networks in the US. for
an analysis. In particular, this study identified
critical nodes in two ways. First, classical disjoint
product method (Ball and Provan 1988) was used
to measure node reliability as a proxy of critical
nodes. Second, Getis-Ord local G statistics (Getis
and Ord 1992; Ord and Getis 1995) was used to
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measure network autocorrelation in finding critical
node. The node reliability, measured by disjoint
product method, presents significance of nodes in
overall network connectivity. However, local G
statistic presents clusters of high or low values
among nodes connected by one linkage. Thus,
applied to network topology, local G statistic
values indicate significance of local nodes within
its inter-connected nodes. In addition, two
variables were applied to network autocorrelation
measure and compared; population and node

reliability.

Literature review

A network is defined as a system of nodes (or
vertices) with connecting links (or edges) (Amaral
and Ottino 2004). Haggett et al. (1977) indicated
the importance of network analyses in geography
because networks are widely used to represent the
underlying structure of a variety of systems. In fact,
network systems are observed everywhere in
nature and even society such as information,
technological, biological, and biological networks
{Newman 200%)

Initiated from the earliest discoveries of Buler' s
1736 solution of the Seven Bridges of Konigsberg,
various types of spatial networks have been studies
in geography where vertices spread over
geographic space and have specific location
information. For example, (Kansky 1963)
investigated measures of transportation network
structure in relationship with its regional
characteristics, and dlassic work of Haggett and
Chorley (1969) reviewed studies on a variety of
networks in geography. These early network

studies are characterized by their primary interests

on network connection topology, where studies
focus on the number of nodes and links in a
network and how they are connected to each
other. Recently, because of rapid development in
networks such as internet or telecommunications,
it becomes enormously complicated to measure
the number of network components and the level
of network connections. Further, studies based on
topological structures of a network required new
effective models for analyzing constantly
developing complex networks.

Driven by rapidly growing availability of cheap
and powerful computers and large-scale electronic
dataset, researchers have made substantial progress
in network analyses reformulating old ideas,
introducing new techniques (Watts 2004). The
result brought the “new science of networks *
(Barabasi 2002: Buchanan 2002; Watts 2003, 2004).
In particular, the “small world networks” |
introduced by Watts and Strogatz (1998), deserve
attention for its early and major contribution to the
new science of networks. The simple background
of small world networks is that real-world network
is not represented by major assumptions in
network connection topology. Given that network
connection topology is commonly assumed to be
either completely regular or completely random,
random network models are characterized by high
connectivity, and regular networks shows relatively
higher clustering with lower connectivity (Newman
et al. 2000). Wartts and Strogatz (1998), however,
indicates that real-world networks are neither
regular nor completely random, but rather exhibit
important properties of both. Thus, these networks
can be highly clusters, like regular lattice, but have
small path lengths, like random graphs. The name,

small world networks, was made by analogy with
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small world phenomencn in which two random
strangers on earth are connected by only six chains
of intermediate acquaintances (Milgram 1967,
Newman 2000),.

In describing small-world network, Watts and
Strogatz (1998) presented regular by a uniform
one-dimensional lattice, where each node was
connected to its k nearest neighbors, and random
by a tunable probability parameter p that specified
the fraction of randomly rewired links as shown in
Figure 1. In particular, the randomness was
introduced by rewiring regular network adjusting
each edge by a probability p. For ‘p=0" indicates
that the original ting is unchanged. However, for
‘p="1"all edges are rewired randomly.

In identifying small world network, auerage path
length (L) and clustering coefficient (C) are used to
measure structural properties of a network. £
presents the number of edges in the shortest path
between two vertices, calculated by the average of
overall pairs of vertices in the network. C is the

ratio between the existing edges among neighbors

of a node and the possible edges in the
neighborhood. For example, when a node d has k
neighbors, then at most &% - 7¥2 edges can exist
between them. If C; denotes the ratio between the
possible and the existing edges of node &, C is
defined as the average of Cj; over all 4. This
method has been used to identify a lot of currently
known small-world networks; for example,
scientific collaboration network (Newman 2001),
the World Wide Web (Albert et al. 1999), and the
electronic power grid (Watts and Strogatz 1993).
Although the small world network model is
considered as an appropriate model to represent
real-world complex networks (Watts 2003), Xu and
Sui (2007} criticize that many studies in the
literature so far focus on aspatial, in particular,
topology-based network, only accounting for
connectivity in network. Many real world networks
are spatial having specific locations of nodes, and
well-defined length (or distance) of edges such as
transportation and computer networks. Connection

topology alone cannot represent the multiple

Regular

sSmall-world

Increasing randomness

Figure 1. Regular, random vs, small=world networks {Source: Walts and Strogatz 1998)
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dimensions of spatial networks, composed location
and distance aspects (Gorman and Kulkarni 2004},
Small number of studies focused on modeling
spatial aspects of networks. In particular, spatial
analytical measures were transformed to be
applied for network analyses. The network
autocorrelation been studied transportation
network and flow systems (Black 1992, 2003, Black
and Thomas 1998). As a recent work, Xu and Sui
(2007) applied network autocorrelation measures
to small-world networks to account for locations
and distances of spatial network. They account for
location and distances applying network
autocorrelation measures such as Moran's 1T (Cliff
and Ord 1981} and Getis-Ord’ s G {(Getis and Ord
1992) statistics. Their applications of network
autocorrelation measures to network analyses are
characterized by the use of global autocorrelation
measures, which provide a single measure of the
overall interdependence of the spatially distributed
variable for the entire area (Anselin 1995).
Therefore, although they could present overall
connectivity patterns in a network, they could not

indicate local critical nodes,

Methodology: classical reliability measure
and application of local spatial
autocorrelation to network analyses

Reliability measure: Disjoint product methods

Although there are many methods are available
to measure exact reliability, exact reliability
evaluation technique in the literature would belong
to one of following three categories (Rai et al.
19953; decomposition or factoring, inclusion-
exclusion, and disjoint products (for detail, see
Barlow and Proschan 1975; Colbourn 1987, Shier

1991). This study uses disjoint product method.
The method is known as more efficient way to
reduce the computation time compared to other
exact methods such as inclusion-exclusion (Misra
1993).

The computation of reliability utilizing disjoint
products is to simply sum up probabilities of all
disjoint events that are mumally exclusive to each

other. The standard mathematical expression is as

follows:
Rerl G, )= 3. Prig (1)
Prisi= f{ Prie} @
Where,

Rop  is the reliability for two selected nodes,
origin O and destination D

G is a graph of a network with known
probability p for edges

Prig}  is the probability of the disjoint event &

& are the edges j constituting & of states

P operational probability of e, (p=10.9")

The algorithm used in this study is a Boolean
algebra. The main idea of this algorithm is to work
forward from an initial successful event by depth
first search and to find another disjoint event by
utilizing its complement and other unused viable
paths based on Boolean logic. This process
continues until all disjoint events are found.

General expression is represented as:

Ropl G)
=PEDHPG S TP S+ - PGS e Sy 16
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Where,
P(5,) : Probability of disjoint event
P(5,) : Probability of complement event of 6,

If a node shows a higher reliability than others, it
implies that the node would have better
connection since reliability of a node is influenced
by the connection degree of the node as well as
the composition of what structures are involved to
the node. The reliability can be computed in terms
of individual nodes by computing mean value of a
node in a reliability OD matrix. Therefore, by
introducing this measure to network
autocorrelation measure, models can be extended,

particularly telecommunication network.

Network Autocorrelation measure: Getis-Ord G

statistics

Network autocorrelation measures are
subdivided into global and local measures. Global
network autocorrelation statistics provide a single
value of the overall network patterns of a study
area. Local network autocorrelation statistics,
however, provide estimates disaggregated to the
level of the spatial analysis units, allowing
assessment of the dependency relationships across
space (Anselin 1995). Spatial heterogeneity, which
is an intrinsic features of spatial data, derives
emphasis on local spatial statistics (Fotheringham
1997, Fotheringham and Brunsdon 1999) because
the level of spatial dependency relationships in
space are different among sub-areas. Local spatial
statistic measures, such as Local Indicators of
Spatial Autocorrelation (LISAY (Anselin 1995 and
Local Statistics Model (LSM) (Getis and Aldstadt
2004; Getis and Ord 1996, Ord and Getis 1995)

have been introduced in literature as major local
spatial autocorrelation measures.

This study applied Getis-Ord G; statistics (Getis
and Ord 1992 Ord and Getis 19935). The
application of &; statistics to network setting is
identical to area setting in its original literature. The
only difference is coming from the setting of spatial
weight matrix, in which the spatial weight matrix
in networtk is formed by node connectivity by
edges. However, the spatial weight matrix in area
data is formed by connectivity from neighboring
areas,

While local Moran’s [ statistic provides similarity
in an area, G; statistic provides local clusters of low
or high values compared to a global mean in the
study area making G; statistic more appropriate for
critical node analyses. In addition, as pointed out
by Zhang and Lin (2000), the use of local Moran’s /
requires additional Moran scatter plot to distinguish
between low- and high-values. A high & value in
a network indicates a network dustering of high
values. A small value indicates clustering of small
values. Figure 2 present conceptual background of
&, statistics in network applications. Node ‘A’
surrounded by neighboring large values results in
large G; statistic values and vice versa for node ‘B’

In its general formulation, given a network
weight matrix , the statistic is defined as (Ord and
Getis 1995),

_ 2wy
G 18, - W o (=2} @

where

1 1
YT R Sy O

u,/;': ;ng, S]:I?‘:" ng,
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Non-critical nodes ‘B’ surrounded by low valugs

Low ‘G’ statistic value

Figure 2. Conceptual background of statistics in network applications

In equation {(4), y; indicates a value for each node,
and W is the common binary network weight
matrix. The generalization of network weight
matrix is well defined in Black’s work (1992). In »
by # matrix for # numbers of nodes, two nodes
connected by a link are coded as 1 and
unconnected nodes are coded as 0. Even though
very simplistic form of network weight matrix are
applied in this study to relieve computational load,
it should be noted that the capability of local
spatial statistic measures can be extended by
applying appropriate spatial weight matrix (Getis
and Aldstadt 2004; Leenders 2002). Regarding
coding schemes for spatial weight matrix, this
study applied W-coding scheme, which
standardizes matrix elements using row-sum
values. W-coding scheme facilitates the
interpretation of the underlying models and
calculation process (Hordijk 1979; Ord 1975).

Alternatively, globally standardized C-coding
scheme or variance stabilizing S-coding scheme
{Tiefelsdotf et al. 1999) can be considered.

Data and Application results: Internet backbone

network and applied variables

Reliability measure: Disjoint Product method

Two Internet backbone dataset from U.S Internet
service providers, specifically, SAVVIS and
SERVINT were tested to measure network., Both
networks are characterized by their relatively large
sizes and different nodal reliabilities due to their
different topologies. In particular, SERVINT is
composed of 22 different nodes, and SAVVIS is
composed of 28 nodes. Each node is located in the
major <ity in the U.S. The dataset provides the
location of the nodes and their connectivity to
other nodes through linkages. Since the numbers

and locations of nodes of each service provider are
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different, we combined the two-network dataset
and formed a large network. The resulting network
covers total 33 city nodes. Therefore, in the result,
the combined dataset provides overall Internet
nodes reliability, and twe initial dataset does
individual companies’ node reliability. Figure 3
shows the reliability calculated by equation (1), (2),
and (3). In particular, Denver is 1% ranked in
SERVINT, but the 12t in SAVIS, and 4% in
combined network. New York ranked the lowest
in SERVINT, but the 2" in SAVIS, and 6™ in
combined. These differences in nodal reliabilities
among networks are coming from different
network topologies.

Network autocorrelation : Getis-Ord’s G, statistics

Classical reliability measures such as disjoint
products have limitations in analyzing spatial

network because they approach spatial network

SERVINT

analyses in aspatial perspedives. Many real-world

spatial networks such as transportation,
telecommunication, and electricity networks have
spatial features in their nodes and edges. For
instance, many networks have size and location of
a node and edge distances. And these network
components can be quantitatively specified for
realistic spatial network analyses. In applying G,
statistic, this study quantifies nodes using
population size and node reliability. Because the
applied network is internet backbone, where the
effect of physical distance is negligible, the edge
was spedified by binary network weight matrix.
Among two variables applied, population size of
a node implies relative significance of the node in
geographical perspectives. In an internet backbone
network, population size of a city can be a proxy

of potential internet use. In addition, seeing that
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Figure 3, City node reliahility in each network
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many critical national infrastructures for power,
finance, transportation, and other kasic resources
rely on information and telecommunication
networks, population size in network analyses
would ke far bevond simple internet use. In
general, a node with large population would be
more significant compare to a node with small
population considering the amount of network use
and corresponding impact under network failure.
Since G statistics only considers directly connected
local nodes, significance of a node is decided by
neighbering nodes’ population sizes rather than
multi-connected source and terminal links of
whole network. Similar to reliability measure
above, G; statistic results for individual nodes are
different in the 3 networks because of different
networl topologies.

Node reliability, calculated by disjoint products,
provides significance of nodes taking all routing
links between source and terminal nodes into
account Since @ statistic provides local clusters of
high or low reliability values, high &, statistic
values indicate relatively high and stable
communication ability in a networlk.

Table 1 shows the results of node significance
calculated by & statistics with population and
Table 2 with reliability. These two tables present
quite different results among each other. Though
there are many, the main reason of the difference
is explained by ranges of nodes values in each
network. In particular, population sizes of city
nodes have large variance level making & statistic
values dependent on neighboring cities’
population sizes. Given that G statistic represents
local mean values of neighboring nodes, a node
would have significantly large G; statistic value
when its neighboring nodes have large population

size,

In combined network in Table 1, reversing
common expectations, Newark, Boston, Dallas
nodes are the most critical nodes with highest &;
statistic values respectively. In particular, it should
be noted that Newark and Boston do not have
outstanding population size. Their neighboring
cities are, however, characterized with large
population size in the network. For instance,
Newark is directly linked to New York and
Philadelphia, and Boston has Chicago and New
York as neighboring node cities. This result implies
that a critical node with large G; value may not be
significant for itself when its population size is
considered. However, in interpreting local network
autocorrelation, a node should be considered
together with neighboring nodes. For instance,
under serious information service cutage in a node
and its diffusion, local impact from the outage
would be the largest in the critical nodes because it
covers neighboring nodes,. In addition, it should
be noted that critical nodes themselves are
vulnerable since they are easily influenced by
neighboring nodes. Node cities with the lowest &;
statistic values are Denver, Richmond, and McLean
respectively. These cities are characterized by their
relatively large number of neighboring nodes with
small population sizes. Since the node and its
neighbors do not have significantly large
population size, their local impact from the outage
and vulnerability are not as large as that of critical
nodes.

Figure 4 shows spatial patterns of G, statistic
values of Table 1. The spatial pattern shows that
high G; statistic values coincide with population
clustering areas such as L.A., New York, and

Dallas. The use of population size for &; statistic
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may give an impression that population size
decides the & statistic results. However, it should
be noted that the edge connections among nodes
shows high level of spatial autocorrelations.
Generally, nodes with high &; statistic values are
interconnected among each others, and vice versa.
This spatial pattern confirms that clusters of large
population sizes of nodes and corresponding high
G, statistic values as indicated above,

The results of combined network in Table 2
show that New York, Atlanta, and St. Louis have
the highest &, statistic values. Similarly to
population application, the high &G; values
represent local (neighboring) clusters of high
reliability, This G; statistic results show overall
similarities to the classical reliability measures
calculated by disjoint product methods. In
combined network, top & out of 8 nodes are

redundant in both &; statistics and disjoint product

method results with slightly a different order. Top
8 nodes of reliability measures by disjoint product
method are Dallas, St. Louis, Chicago, Denver,
Aflanta, New York, San Francisco, and Seattle by
order. Compared to &; statistic result in Table 2,
only Miami and Los Angeles are added to top 8
nodes of high G; statistic values replacing Dallas
and Chicago. This similarity between the results is
explained by small variance in reliability values
calculated by disjoint product method. 27 out of 33
reliability values are ranging between 0.966 to
0.977. Consequently, this small variance in
reliability values make G; statistic values similar
among nodes because there are very few
differences between global and local mean values.
In addition, very small variance among nodal
reliability values makes G; statistic values close to
zero. Seeing the & statistic is calculated by

comparing local mean values to global mean,

Figure 4. Spatial pattern of statistic values by population
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similarity between these two make the resulting &;
statistic close to zero as expected.

In spite of high level of similarity, the differences
between &; statistic and disjoint product methods
should be considered also. Although the difference
is not significant in the reliability analysis, the
difference comes from the different notions of
connectivity between G; statistics and disjoint
product method. While disjoint product considers
all routing links between source and terminal
nodes based on disjoint path sets, G; statistics only
considers links that connect a node and its
neighboring nodes. Therefore, in G; statistics,
significance of a node is more dependent on
surrounding nodes’ values rather than multi-
connected source and terminal links of disjoint
paths. For example, as Figure 5 shows, Chicago
surrounded by non-critical nodes such as Detroit,

Indiana, Cincinnati, Cleveland, and Columbus,

should (and actually} have a relatively low &;
statistic value though it has high reliability in
disjoint product methed. In this perspective, highly
autocorrelated nodes present not only network
reliability, but also give implication of its
vulnerability to neighboring nodes. Compared to
this G; measure, the reliability measure of disjoint
product methods provides a node’s influence to
over all nodes in the network rather neighboring
nodes. Consequently, when research interests are
more focused on local network ranges, G; statistics

performs better than disjoint product method

Figure 5. Spatial pattern of statistic values by reliability
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Table 1. Node significance calculated by G; statistics  Table 2, Node significance calculated by G statistics
using population

using reliability

Rank™ presents G stat rank and (Disjcint product rank)

G Values by Population

G Value by Mean Reliability

Rank: Rank: Rark: Rank: Rank: Rank:
ID|cITy Combined | Combined | SAVVIS | SAVVIS | SERVINT |SERVINT ID | CITY Combined | Combined | SAVVIS | SAVVIS | SERVINT |SERVINT
30 | Mewark 1 06035 7 |0603 Ma NA 20 |New York 1 0.2947 1 |0z703| 2z | 00696
6 | Boston 2 05267 1 107175 8 00204 2 [Atlanta 2(5) 0.7767 3102389 3 0.2639
13 | Dallas 3 03839 3 |03924] 10 |-DO1E2 43|&. Louss 3(2 0.264 zo|0ze06] oz | 03077
43|51, Louis 4 03323 6 |03323] 3 0124 15 |Denver 44 0z300 | 12 [0am1| 1 0.3175
32 | Philadelphia 5 03084 | 7 [0 1 0531 26 | Miami 5@ 0223 9 [o1s1] 5 | 02633
16 | Detroit 6 0.3071 4 |03720 7 0.0607 42 [Seattle 609 0.2126 8 101933 11 0.2239
23 [Los Angeles 7 0.305 7 | 0305| 15 |-0.0818 40(San Francisco| 7@ 0.2126 5 |0z/1| ma MA
40 | San Franciseo I 0.2073 8102973 Ma NA  23|Los Angelss | 8(10) 0.2004 7 |0z122] 18 01859
26 | Miami g 0.246 5 03724 13 |-00620 27 |Minneapclis 9 01853 | 10 |01484| 13 | 01862
3% | Phoenix 10 0.2301 0 |0.2301 MNA NA 20 |Houston 10 0.1849 17 |0.1171 4 0.2636
8 |Chicago 11 01784 | 10 [02179( 18 |-0.0922 6 |Boston 11 01848 | 13 |01z31| 19 | 01412
2 | Atlanta 12 01564 | 11 |0275| 1z | D041 25|Mclean 12 01789 | NA | NA 7| 02619
29 [New York 13 01386 | 13 |01198( 5 | 00801 3 |Austn 13 01631 | 18 01171 9 | 0.2262
47 [ Seattle 14 01039 | 12 [01s69| 2 01319 32| Philadelphia 14 01607 | 21 |01073| 1 | 00995
21 | Indianapolis 15 00373 | 16 |00373| Ma NA 8 [Chicago 15 01576 6 |oz57| & | 029m
27 | Minneapolis 16 00292 15 |00675 4 0.1084 4 |Balimore 10 0.1571 5 (00749 14 | 01861
3 | Austin 17 00254 | 14 [008d46| 9 | 00202 44| Washingon 17 01569 | 20 [01101| NA MA
4 | Baltimore 18 00233 | 2z |00 6 0.0677 36 | Richmond 18 01324 | NA | NA 10| 02262
18 | Fort Worth 19 00153 | 17 [00133] Na NA 22 |Kansas City 19 0129 11 |01231| 20 | 01307
34 |Pittsburgh 20 00128 | 18 |-0.0128] Na MA 41 |San Jose 20 0.129 NA | NA 17 | 01855
38 | San Antonio 21 00187 | MA | MA 11 |-0.0187 35|Portland pil 0129 15 [01231] NA MA
44 | Washington 22 00386 | 19 (00386 ma NA 33 |Phoenix 22 0.129 14 01231 NA A
10 | Cleveland 23 -0.0508 20 |-0.0508] MA A 38| San Antonio 23 01284 | NA NA 16 01858
O | Cincinnati 24 -00515 21 [-00515] NA NA 30| Newark 24 01283 19 (01125 NA NA
35 | Portland 5 0063 B |-0065| Na NA 13 |Dallas 25 01274 4 |0z66] 6 0.262
41| 5an Jose 26 00793 | Ma | MNa 14 | -0.0793 31 Nerfolk 26 01231 | NA | NA 15 | 01858
22 | Kansas City 77 -0.081 % |0081| 16 | 0082 18(Fort Worth 7 0.0789 3 |00857| NA MA
20 [Houston 28 0082z | 25 |-00775( 17 |-D.0822 34| Pinshburgh 28 00789 | 24 | 0081 | NA MA
11 | Columbus 20 01054 | 2 [|-01054| Ma NA 16| Detroit 29 00486 | 16 |0lzts| 1z | 0.2103
31 | Norfolk 30 01125 | Ma NA 19 |-0.1135 21 |Indianapolis 30 0.2808 22 0097 NA NA
25 [McLean 31 01424 | NA | MNa 0 |-014% 9 |Cincinnati 31 0488 | 0.0608| NA MA
36 | Richmond 32 01709 | MA | Na 22 |-01709 10| Cleveland 31 0488 | 0.0608| NA A
15 | Denver 33 01712 | %4 |-00749 21 |-01542 11| Columbus 33 0537 | B |00557| NA MA
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Conclusion

So far this research discussed network
autocorrelation in the context of spatial network
analyses and applied Getis-Ord’s ; statistics as a
local network autocorrelation measure in
comparison to classical disjeint product method. In
the process, two variables, population size and
reliability, were applied to represent node
attributes. The use of local network autocorrelation
measures extended existing network analyses in
finding critical nodes. In particular, by providing
individual local level of network autocorrelation,
the applied method showed local clusters of
significant nodes and its possible vulnerability
under local network outages. Therefore, if research
interests were local network ranges or impacts,
local network autocorrelation measures would be
more appropriate compared to classical network
analysis methods.

In application perspectives, this study quantified
only node values because an edge value, such as
distance, was not significant in the analysis of
internet backbone network. However, depending
on network feature, nodes can be specified in
different ways, and edges can be quantified also.
In addition, network autocorrelation analysis can
be applied to find critical links by adjusting weight
matrix (Berglund and Karlstrom 19993, For
instance, in analyses of transportation of migration
networks, edges can be specified by distance or
differently weighted by modes of transportations.
While this study used G statistics in applying local
network autocorrelation, local Moran's 1 statistics
can be applied when research interest is similarity

among nodes values rather than dustering of high

or low values,

While this is not the first, the use of network
autocorrelation in network analysis has potentials
for other applications and deserve interests for
further studies. This study hopes to stimulate

further studies of network autocorrelation in the

field.
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