• Title/Summary/Keyword: Network Pharmacology

Search Result 115, Processing Time 0.02 seconds

Neuroprotective Agents in the Intensive Care Unit -Neuroprotective Agents in ICU -

  • Panahi, Yunes;Mojtahedzadeh, Mojtaba;Najafi, Atabak;Rajaee, Seyyed Mahdi;Torkaman, Mohammad;Sahebkar, Amirhossein
    • Journal of Pharmacopuncture
    • /
    • v.21 no.4
    • /
    • pp.226-240
    • /
    • 2018
  • Neuroprotection or prevention of neuronal loss is a complicated molecular process that is mediated by various cellular pathways. Use of different pharmacological agents as neuroprotectants has been reported especially in the last decades. These neuroprotective agents act through inhibition of inflammatory processes and apoptosis, attenuation of oxidative stress and reduction of free radicals. Control of this injurious molecular process is essential to the reduction of neuronal injuries and is associated with improved functional outcomes and recovery of the patients admitted to the intensive care unit. This study reviews neuroprotective agents and their mechanisms of action against central nervous system damages.

Feasibility of fully automated classification of whole slide images based on deep learning

  • Cho, Kyung-Ok;Lee, Sung Hak;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.89-99
    • /
    • 2020
  • Although microscopic analysis of tissue slides has been the basis for disease diagnosis for decades, intra- and inter-observer variabilities remain issues to be resolved. The recent introduction of digital scanners has allowed for using deep learning in the analysis of tissue images because many whole slide images (WSIs) are accessible to researchers. In the present study, we investigated the possibility of a deep learning-based, fully automated, computer-aided diagnosis system with WSIs from a stomach adenocarcinoma dataset. Three different convolutional neural network architectures were tested to determine the better architecture for tissue classifier. Each network was trained to classify small tissue patches into normal or tumor. Based on the patch-level classification, tumor probability heatmaps can be overlaid on tissue images. We observed three different tissue patterns, including clear normal, clear tumor and ambiguous cases. We suggest that longer inspection time can be assigned to ambiguous cases compared to clear normal cases, increasing the accuracy and efficiency of histopathologic diagnosis by pre-evaluating the status of the WSIs. When the classifier was tested with completely different WSI dataset, the performance was not optimal because of the different tissue preparation quality. By including a small amount of data from the new dataset for training, the performance for the new dataset was much enhanced. These results indicated that WSI dataset should include tissues prepared from many different preparation conditions to construct a generalized tissue classifier. Thus, multi-national/multi-center dataset should be built for the application of deep learning in the real world medical practice.

Glia as a Link between Neuroinflammation and Neuropathic Pain

  • Jha, Mithilesh Kumar;Jeon, Sang-Min;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar;Jeon, Sangmin;Jin, Myungwon;Lee, Won-Ha;Suk, Kyoungho
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.289-294
    • /
    • 2013
  • Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach

  • Park, Sa-Yoon;Park, Ji-Hun;Kim, Hyo-Su;Lee, Choong-Yeol;Lee, Hae-Jeung;Kang, Ki Sung;Kim, Chang-Eop
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng, it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng, a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.

Systemic and molecular analysis dissect the red ginseng induction of apoptosis and autophagy in HCC as mediated with AMPK

  • Young Woo Kim;Seon Been Bak;Won-Yung Lee;Su Jin Bae;Eun Hye Lee;Ju-Hye Yang;Kwang Youn Kim;Chang Hyun Song;Sang Chan Kim;Un-Jung Yun;Kwang Il Park
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.479-491
    • /
    • 2023
  • Background: Hepatocellular carcinoma (HCC) has a high incidence and is one of the highest mortality cancers when advanced stage is proceeded. However, Anti-cancer drugs available for treatment are limited and new anti-cancer drugs and new ways to treat them are minimal. We examined that the effects and possibility of Red Ginseng (RG, Panax ginseng Meyer) as new anti-cancer drug on HCC by combining network pharmacology and molecular biology. Materials and Methods: Network pharmacological analysis was employed to investigate the systems-level mechanism of RG focusing on HCC. Cytotoxicity of RG was determined by MTT analysis, which were also stained by annexin V/PI staining for apoptosis and acridine orange for autophagy. For the analyze mechanism of RG, we extracted protein and subjected to immunoblotting for apoptosis or autophagy related proteins. Results: We constructed compound-target network of RG and identified potential pathways related to HCC. RG inhibited growth of HCC through acceleration of cytotoxicity and reduction of wound healing ability of HCC. RG also increased apoptosis and autophagy through AMPK induction. In addition, its ingredients, 20S-PPD (protopanaxadiol) and 20S-PPT (protopanaxatriol), also induced AMPK mediated apoptosis and autophagy. Conclusion: RG effectively inhibited growth of HCC cells inducing apoptosis and autophagy via ATG/AMPK in HCC cells. Overall, our study suggests possibility as new anti-cancer drug on HCC by proof for the mechanism of the anti-cancer action of RG.

Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis

  • Yu, Suyun;Wang, Siliang;Huang, Shuai;Wang, Wei;Wei, Zhonghong;Ding, Yushi;Wang, Aiyun;Huang, Shile;Chen, Wenxing;Lu, Yin
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.580-592
    • /
    • 2020
  • Background: Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non-organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods: The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results: Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell-mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion: According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.

Regulation of Pharmacogene Expression by microRNA in The Cancer Genome Atlas (TCGA) Research Network

  • Han, Nayoung;Song, Yun-Kyoung;Burckart, Gilbert J.;Ji, Eunhee;Kim, In-Wha;Oh, Jung Mi
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.482-489
    • /
    • 2017
  • Individual differences in drug responses are associated with genetic and epigenetic variability of pharmacogene expression. We aimed to identify the relevant miRNAs which regulate pharmacogenes associated with drug responses. The miRNA and mRNA expression profiles derived from data for normal and solid tumor tissues in The Cancer Genome Atlas (TCGA) Research Network. Predicted miRNAs targeted to pharmacogenes were identified using publicly available databases. A total of 95 pharmacogenes were selected from cholangiocarcinoma and colon adenocarcinoma, as well as kidney renal clear cell, liver hepatocellular, and lung squamous cell carcinomas. Through the integration analyses of miRNA and mRNA, 35 miRNAs were found to negatively correlate with mRNA expression levels of 16 pharmacogenes in normal bile duct, liver, colon, and lung tissues (p<0.05). Additionally, 36 miRNAs were related to differential expression of 32 pharmacogene mRNAs in those normal and tumorigenic tissues (p<0.05). These results indicate that changes in expression levels of miRNAs targeted to pharmacogenes in normal and tumor tissues may play a role in determining individual variations in drug response.

Vasorelaxing Activity of Ulmus davidiana Ethanol Extracts in Rats: Activation of Endothelial Nitric Oxide Synthase

  • Cho, Eun-Jung;Park, Myoung-Soo;Kim, Sahng-Seop;Kang, Gun;Choi, Sung-A;Lee, Yoo-Rhan;Chang, Seok-Jong;Lee, Kwon-Ho;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.339-344
    • /
    • 2011
  • Ulmus davidiana var. japonica Rehder (Urticales: Ulmaceae) (UD) is a tree widespread in northeast Asia. It is traditionally used for anticancer and anti-inflammatory therapy. The present study investigated the effect of an ethanol extract of UD on vascular tension and its underlying mechanism in rats. The dried root bark of UD was ground and extracted with 80% ethanol. The prepared UD extract was used in further analysis. The effect of UD on the cell viability, vasoreactivity and hemodynamics were investigated using propidium iodide staining in cultured cells, isometric tension recording and blood pressure analysis, respectively. Low dose of UD ($10{\sim}100{\mu}g/ml)$ did not affect endothelial cell viability, but high dose of UD reduced cell viability. UD induced vasorelaxation in the range of $0.1{\sim}10{\mu}g/ml$ with an $ED_{50}$ value of $2{\mu}g/ml$. UD-induced vasorelaxation was completely abolished by removal of the endothelium or by pre-treatment with L-NAME, an inhibitor of nitric oxide synthase. UD inhibited calcium influx induced by phenylephrine and high $K^+$ and also completely abolished the effect of L-NAME. Intravenous injection of UD extracts (10~100 mg/kg) decreased arterial and ventricular pressure in a dose-dependent manner. Moreover, UD extracts reduced the ventricular contractility (+dP/dt) in anesthetized rats. However, UD-induced hypotensive actions were minimized in L-NAME-treated rats. Taken together, out results showed that UD induced vasorelaxation and has antihypertensive properties, which may be due the activation of nitric oxide synthase in endothelium.

Interleukin-7 Receptor is Indispensable for Proliferation and Survival in Thymic ${\gamma}{\delta}$T Cell Development

  • Kim, Dong-Hyun;Yoon, Byung-Hak;Jung, Joo-Eun;Kim, Hoog-Sook;Ko, Seong-Hee;Choi, Eun-Young;Lee, Kwang-Ho;Kim, Kyung-Jae;Ye, Sang-Kyu;Chung, Myung-Hee
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 2005
  • Background: Interleukin-7 receptor (IL-7R) ${\alpha}$-deficient mice have small numbers of B cells and ${\alpha}{\beta}$T cells in periphery, they totally lack ${\gamma}{\delta}$T cells. In addition, the V-J recombination and transcription of TCR ${\gamma}$ genes is also severely impaired in IL-7R ${\alpha}$-deficient mice. Stat5, a signaling molecule of the IL-7R, induces germline transcription in the TCR ${\gamma}$ locus, and promotes V-J recombination and ${\gamma}{\delta}$T cell development. However, the roles for IL-7R signaling pathway in thymic or extrathymic ${\gamma}{\delta}$T cell development are largely unknown. Methods: To clarify the role of the IL-7 receptor in proliferation and survival of ${\gamma}{\delta}$T cells, we introduced the TCR ${\gamma}{\delta}$ transgene, $V_{{\gamma}2}/V{\delta}_5$, into IL-7R ${\alpha}$-deficient mice, and investigated the development of ${\gamma}{\delta}$T cells. Results: We found that $V_{{\gamma}2}/V{\delta}_5$ transgene restored ${\gamma}{\delta}$T cells in the epithelium of the small intestine (IEL) but not in the thymus and the spleen. Further addition of a bcl-2 transgene resulted in partial recovery of ${\gamma}{\delta}$T cells in the thymus and the spleen of these mice. Conclusion: Taken together, this study revealed that the IL-7R ${\alpha}$ is indispensable for proliferation and survival mainly in thymic ${\gamma}{\delta}$T cell development.