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Abstract

Neuroprotection or prevention of neuronal loss is a 
complicated molecular process that is mediated by vari-
ous cellular pathways. Use of different pharmacological 
agents as neuroprotectants has been reported especial-
ly in the last decades. These neuroprotective agents act 
through inhibition of inflammatory processes and ap-
optosis, attenuation of oxidative stress and reduction of 
free radicals. Control of this injurious molecular process 
is essential to the reduction of neuronal injuries and 
is associated with improved functional outcomes and 
recovery of the patients admitted to the intensive care 
unit. This study reviews neuroprotective agents and 
their mechanisms of action against central nervous sys-
tem damages. 

1. Introduction

Neuroprotection aims at preventing neuronal loss and 

neurodegeneration through applying different agents 
to inhibit pathophysiological pathways that are injuri-
ous to the nervous system [1]. Use of neuroprotective 
agents has a long history from ancient Greece to the 
current age with the presence of pharmacological and 
natural neuroprotectants and gene therapies [1]. The 
most common conditions associated with nervous 
system involvement and Intensive Care Unit (ICU) ad-
mission are Trauma, shock, stroke, sepsis, traumatic 
brain injury (TBI) and ruptured brain aneurysm [1, 2].

2. Stroke

Stroke is one of the major causes of disability and 
death in the world [3]. Only one-third of patients with 
stroke recover enough to be free of disability [4]. Males 
have a greater incidence of stroke than females; hyper-
tension, diabetes, atrial fibrillation, smoking and oral 
contraception pills are the major risk factors for stroke 
[2]. After stroke, decreased blood flow and subsequent 
disturbance in ionic homeostasis and intracellular 
edema are major consequences. Release of excitato-
ry neurotransmitters and production of free radicals 
because of mitochondrial dysfunction occur conse-
quently [5]. Oxidative stress, activation of apoptotic 
pathways and excitotoxicity are the subsequent events 
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after cerebral ischemia that lead to neuronal death [4, 5].

3. Shock

Shock is defined as a decrease in blood perfusion to the 
body tissues and consequent deficiency in oxygen and 
substrate due to tissues and cell injuries [6]. Main types 
of shock include cardiogenic, hypovolemic, anaphylactic, 
septic and neurogenic shock [7]. Cellular ischemia is the 
primary cause of cell damage. After a decrease in blood 
perfusion to the cells, aerobic generation of ATP will de-
crease and mitochondrial dysfunction, increased intracel-
lular PH, production of free radicals and autolytic pathway 
activation are following findings [6, 7]. 

4. Sepsis

 Sepsis is a fatal condition with a high mortality rate [8]. Se-
vere sepsis can lead to hypoperfusion and subsequent in-
crease in serum creatinine level, an increase of serum lac-
tate and total bilirubin level, thrombocytopenia and acute 
lung injuries [9]. Pneumonia, urinary tract infection and 
intra-abdominal infections are the most common causes 
of sepsis [10]. The incidence of Gram-negative bacterial 
infections have increased during the past decade [11]. The 
proinflammatory and anti-inflammatory responses are 
implicated in the tissue damage and secondary bacterial 
infection but specific responses depend on the host im-
mune system and the causative pathogen [10, 11]. 

5. Traumatic brain injury

Trauma is one of the primary causes of disability and 
death worldwide [12]. TBI occurs as a result of sudden 
trauma to the head and leads to cognition, motor function 
and sensation impairment with a high mortality rate [13]. 
Increase in intracranial pressure, focal contusion, hemat-
oma and cerebral edema formation occurs after trauma 
to the head [14]. The secondary part of TBIs will occur in 
cellular stage with severe consequences that have been 
described by Park and colleagues (2008) as; “(1) failure of 
neuronal energy, (2) glial injury and dysfunction, (3) in-
flammation, (4) destruction and stenosis of microvascula-
ture, (5) excitotoxicity (6) and aberrant ionic homeostasis 
in neurons” [15]. 

6. Ruptured Brain Aneurysm

A brain aneurysm or a cerebral aneurysm is dilation of a 
supplied blood artery of the brain [16]. An unruptured an-
eurysm is often asymptomatic and recognizable by com-
puted tomography or magnetic resonance imaging. The 
consequence of a ruptured brain aneurysm is subarach-
noid hemorrhage that is a life-threatening condition [16]. 
Most of the brain aneurysms are congenital or with the fa-
milial background and genetic predisposition [17]. 

7. Mechanisms of neuronal injuries

Programmed cell dead (PCD), particularly apoptosis, 
excitotoxicity, oxidative stress, and inflammation are the 
primary mechanisms leading to neuronal injuries in the 
patients admitted to ICU [18]. PCD is a mixture of path-
ways that result in removal of the unwanted cell [19]. Sev-
eral proteins such as caspases, apoptosis-inducing factor, 
Bcl-2 family proteins, p53 protein, tumor necrosis factor 
receptor, TRADD, Fas ligand and Fas-associated protein 
with death domain (FADD) are essential in the activation 
or inhibition of PCD pathways [19]. Three major routes 
have been defined for PCD that include intrinsic, extrinsic 
and caspase-independent pathways [20].

 Some of the Bcl-2 family proteins have a significant role 
in the initiation of PCD by increasing mitochondrial per-
meability, the release of cytochrome-c from mitochondria 
and activation of caspases, known as the intrinsic pathway 
of apoptosis[21]. The extrinsic pathway works through trig-
gering caspases-8 via membrane receptors like Fas and tu-
mor necrosis factor-α [19, 20]. The release of apoptosis-in-
ducing factor from mitochondria can induce apoptosis 
through a caspase-independent pathway [20].

 Excitotoxicity is a primary mechanism of neuronal 
damage [22]. Glutamatergic neurons play an important 
role in the excitotoxicity [23]. As described by Dong et al. 
(2009), “glutamate can activate N-methyl-D-aspartic acid 
(NMDA), α-amino-3-hydroxy-5methylisoxazole-4-propi-
onate (AMPA) and kainic acid (KA) receptors” [22]. Over-
activation of glutamate receptors can lead to continuous 
activation of these receptors [24]. This constant activation 
results in: 1) cellular calcium hemostasis impairments [25], 
2) oxidative stress and increased production of nitric oxide 
[26, 27], 3) generation of free radicals such as peroxynitrite 
and hydroxyl radical [28], and 4) PCD. Oxidative stress is 
associated with the accumulation of reactive species of 
nitrogen and oxygen (ROS) in the cell that leads to ATP 
depletion, mitochondrial dysfunction and impairment of 
cellular hemostasis [29]. Free radicals such as hydroxyl are 
highly active and can pair with DNA and lead to oxidation 
of DNA and cell death [29]. Oxidative stress and produc-
tion of free radicals result in the activation of PCD [30]. In 
the ischemic neuronal injuries, the presence of inflamma-
tory cytokines, leukocytes, and chemokines play a signifi-
cant role in the pathogenesis of cell death [31, 32]. Cerebral 
blood flow occlusion leads to inflammatory reactions [33]. 
The presence of leukocytes and inflammatory mediators 
increase the level of adhesion proteins such as P-Selectin, 
E-Selectin and ICAM-1 results in the obstruction of mi-
crovessels, edema, necrosis and infarction [32, 33].

8. Neuroprotective agents

Beneficial use of many agents has been reported in the 
prevention of neuronal cell death in animal models but 
supportive data from clinical trials is still lacking [34]. New 
drugs have been introduced during the last decade with 
better outcomes in patients. We discuss some potent neu-
roprotective agents that may be beneficial for patients ad-
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mitted to the ICU (Table 1). 

8.1. Glutamate blockers

Glutamate is a neurotrasmitter and as described by Da-
nysz et al. (2002), “it activates three major types of iono 
tropic receptors, namelyo~-amino-3-hydroxy-5-me-
thyl-4-isoxazolepropionic acid (AMPA), kainateand 
N-methyl-D-aspartate (NMDA) and several types of me-
tabotropic receptors. AMPA receptors are involved in fast 
glutamatergic neurotransmission” [35]. The major role of 
glutamate blockers are inhibition of glutamate binding to 
NMDA and AMPA receptors to avoid excitotoxicity [36].

 Glutamate blockers such as polyarginine R18 and NA-1 
(TAT-NR2B9c) were used in different studies in stroke 
models in rats [37, 38], non-human primates [39] and also 
in human [40]. Milani and colleagues reported R18 as a 
potential neuroprotective agent. In both studies on rat 
administration of R18 in 60 minutes post-stroke reduced 
infarct volume and cerebral edema, improved functional 
outcome, more efficient than NA-1 [37, 38]. These agents 
have Anti-excitotoxicity properties with inhibition of post-
synaptic density-95 protein/nNOS complex [41]. Reduce 
of oxidative stress of mitochondria in neurons [42], reduc-

tion of calcium influx due to glutamate excitotoxic [43], 
proteolytic activity inhibition of proprotein convertases 
[44], are mechanisms of action for this class of neuropro-
tective agents. 

8.2. Magnesium sulfate

Magnesium is the second abundant cation in the body. It 
is involved in different physiological pathways and has dif-
ferent clinical applications [45-47]. Magnesium activates 
the enzymatic process for the transfer of phosphate from 
ADP to ATP. It regulates intracellular calcium availability, 
cell cycle and mitochondrial function. Decrease of serum 
magnesium levels lead to hypocalcemia and hypokalemia. 
Magnesium also blocks NMDA receptor and leads to anal-
gesia and neuroprotection [48]. 

 Magnesium sulfate (MgSO4) is another potentiate neu-
roprotective agent with anti-excitotoxicity activity, block-
age of N-methyl-D-aspartate (NMDA) channels and volt-
age-gated calcium channels inhibition properties [49, 50].

 Use of MgSO4 have been documented in acute stroke 
[51-60], aneurysmal subarachnoid hemorrhage [61-68], 
and Traumatic brain injuries [49, 50, 69]. Monitoring of 
magnesium is vital for patients admitted to the ICU be-
cause low serum magnesium level is associated with high 

References/Study
Neuroprotective 

Agent
Class Clinical use

Recommended 
Dosage

Study population Outcome

[37, 38]

polyarginine R18

Glutamate blockers
Ischemic 

Stroke
1000 nmol/kg Rat

Reduced Infarct 
volume, cerebral 

swelling and 
functional 
outcomes

NA-1 
(TAT-NR2B9c)

[50, 51, 58, 59, 
61-68]

Magnesium sulfate 
(MgSO4)

Glutamate blockers 
/ NMDA channels 

blocker

Hemorrhagic 
and ischemic 

Stroke, 
Traumatic 

brain injuries

Up to 65 
mmol/day

Human Patients

MgSO4 reduced 
delayed cerebral 

ischemia and 
showed better 

outcome.

[93, 95, 96, 98]

Atorvastatin, 
Mevastatin, 

Rosuvastatin and 
Simvastatin

Statins
Ischemic 

Stroke
Up to 20 
mg/kg/day

Mice and 
Human Patients

Good functional 
outcome, reduce 
of infarct size, 

increase of 
cerebral blood 

flow, lower 
mortality

[109-113, 223, 
224]

Melatonin Hormone

Hemorrhagic   
and ischemic 

Stroke, 
Traumatic 

brain injuries

Up to 200 
mg/kg/day

New Zealand 
white rabbit, 

mice and rats

Prevention of 
vasospasm and 

apoptosis of 
endothelial cells, 
reduce oxidative 

damage

[119-123] Erythropoietin
Hematopoietic 

growth factor

Hemorrhagic 
and ischemic 

Stroke, 
Traumatic 

brain injuries

Up to 5000 
unit/Kg

Rabbit, Rat, 
Mice

Reduced infarct 
size, Attenuate 

vasospasm, good 
functional 
outcome

Table 1 Potential neuroprotective agent in the intensive care unit for the management of hemorrhagic stroke, ischemic stroke and trau-

matic brain injuries.
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[128-134]

NXY-059, 
PEG-SOD, 

Tempol, 
hydroxystilbene 
oxyresveratrol

Free Radical 
Scavengers

Ischemic 
Stroke, 

Traumatic 
brain injuries

2270 mg for 
initial infusion 

(NXY-059)

Rat and Human 
Patients

Improve of 
primary 

outcome, 
Improve 
cognitive 
outcome, 

(NXY-059) 
Other agents 

was not 
effective. 

NXY-059 was 
ineffective in a 

study [133]

[137, 139, 141]
Cyclosporin A

(CsA) and FK506 
(Tacrolimus)

Immunosuppressant

Ischemic 
Stroke, 

Traumatic 
brain injuries

Up to 10 mg/kg 
for CsA

Up to 6 mg/kg 
for FK506

Rat

Reduction of 
infarct volume, 

improved 
functional 
recovery

[149, 153-155] NAC Mucolytic agent

Ischemic 
Stroke, 

Traumatic 
brain injuries

Up to 100 
mg/kg, 600 mg 

twice daily 
(human patient)

Rat, Gerbil and 
A human 
Patients

Decrease of 
cerebral 

vasospasm, 
inhibition of 

apoptosis of the 
endothelial cells, 

Improve 
functional 
outcome 

[158-164]

Esmolol, 
propranolol, 

labetalol, 
metoprolol, 

Blockers of 
beta-adrenergic 

receptors 

Traumatic 
brain injuries

10 mg/kg (Rat) Rat, Human
Lower mortality 
rate, reduce of 
infarct volume

atenolol or 
carvedilol

[170-172]

Flavocoxid, 
NS-398, 

Valdecoxib, 
Celecoxib

COX-2 inhibitors
Hemorrhagic   
and ischemic 

Stroke

Up to 
200mg/kg/day 

(Flavocoxid), 20 
mg/kg (NS-398),  
Up to 20 mg/kg 

twice daily 
(valdecoxib),
20 mg/kg/day 

(Celecoxib)

Rat, rabbit, mice

reduce of infarct 
volume and 
inhibition of 

neuro-inflammat
ory processes

[206-209] Curcumin Herbal medicine

Hemorrhagic   
and ischemic 

Stroke, 
Traumatic 

brain injuries

Up to 300 mg/kg Mice

Attenuate of 
neurological 

deficit, Decrease 
of cerebral 

water content
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mortality rate in the ICU [70, 71]. The use of MgSO4 in pa-
tients admitted to ICU has been associated with a decrease 
in the biomarkers such as S100B protein and serum neu-
ron-specific enolase level (S-NSE) [72, 73]. 

8.3. Statins 

Statins or 3-hydroxy-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase inhibitors are the most frequntly 
administered class of cholesterol-lowering drugs [74] that 
have established effects in reducing coronary plaque vol-
ume [75] and cardiovascular events [76]. Beyond their well-
known hypocholesterolemic effect, a myriad of lipid-in-
dependent pleiotropic activities have been described 
for statins [77-88]. Statins need to enter the cells, some 
of them are lipophilic and some are hydrophilic. Statins 
have different intestinal absorption after oral administra-
tion, differing from 30% (lovastatin) to 98% (fluvastatin). 
Systemic bioavailability of these drugs are 5-30%. Most of 
them are metabolized by cytochromeP-450 and have high 
protein binding [89]. 

 Statins have antioxidant and anti-inflammatory actions 
[90-94]. Beneficial effects of atorvastatin, mevastatin, ro-
suvastatin and simvastatin in acute ischemic injuries have 
been reported in human patients as well as in animal 
models [95-98]. Mechanism of statins’ actions include: (1) 
endothelial type III nitric oxide synthase (eNOS) up-regu-
lation leads to inhibition of platelet activation; (2) reduce 
of malondialdehyde (MDA) and oxidized LDL (oxLDL); 
(3) alteration in the gene expression of inflammatory mol-
ecules such as VCAM-1, ICAM-1, E-selectin and interleu-
kins [92, 93, 95].

 As previously described, statins used for acute ischem-
ic injuries with a different outcome. Some of these agents 
have better penetration into the cells, and it is because of 
the various lipophilic properties of this agents [99]. The use 
of statins has been reported with an increase in the risk of 
symptomatic hemorrhagic transformation (SHT) because 
of antithrombotic and fibrinolytic properties of these 
drugs [100, 101].

8.4. Melatonin

Melatonin or N-acetyl-5-methoxytryptamine is a neuro-
hormone produced in the pineal gland that regulates cir-
cadian rhythm and has several clinical application[102]. 
Melatonin has low bioavalability (up to 56%) that is differ-
ent from person to person. The plasma half-life is 20 to 50 
minutes. Melatonin is metabolized by liver to at least 14 
metabolites [103, 104]. Melatonin is the agonist of mela-
tonin receptor 1 (MT1), melatonin receptor 2 (MT2) and 
nuclear receptor ROR-β [104, 105]. MT1 and MT2 are ex-
pressed in CNS and other body organs [105]. Expression 
of these receptors in the CNS leads to the regulation of 
central circadian rhythmicity [104]. Potential properties 
of melatonin like antioxidant effect, free radical scavenger, 
and anti-inflammatory reported in several studies [106-
113].

 Melatonin’s mechanisms of action as neuroprotective 
agents are as below:

1) alteration of antioxidant enzymes gene expressions like 
catalase (CAT), glutathione peroxidase (GPx), and super-
oxide dismutase (SOD) [114].
2) attenuation of the activation of Nuclear Factor- Kappa 
B (NF-κB) and activator protein 1 (AP-1); downregulation 
of tumor necrosis factor alpha (TNFα), Cyclooxygenase2 
(COX2), Interleukin 1β [102, 111].
3) decrease in the level of phospho-Jun N-terminal Kinase 
1 (p-JNK1) leads to suppression of apoptotic factors [102].
4) direct detoxification of free radicals like hydroxyl and 
protection of the DNA by donation of the electron [115].

Melatonin showed good outcome as neuroprotective 
agents in various neuropathologies [106-113].

8.5. Erythropoietin

Erythropoietin is a cytokine and hormone that is produced 
by the kidneys and the liver. It can stimulate erythropoiesis 
[116] and maitains the blood hemoglobin concentration 
under different circumstances [117]. Erythropoietin has a 
bioavailability of 20-30% after subcutaneous administra-
tion. Plasma half-life of this drug is more than 24 hours. 
Elimination half-life is up to 13 hours after intravenous 
administration [118]. Erythropoietin is indicated for the 
treatment of anemia because of various etiologies such 
as chronic kidney disease, chemotherapy, blood loss and 
drug adverse events [117]. 

 The role of erythropoietin as a neuroprotective agent is 
documented in some studies on animal models [119-123]. 
Expression of erythropoietin receptor (EpoR) in the brain 
tissue is responsible for the neuroprotective effect of this 
agent [121]. Neuroprotective action of erythropoietin oc-
curs through three signaling pathways and leads to inhibi-
tion of apoptosis [124].

 Erythropoietin readily crosses the blood-brain barrier 
(BBB) after brain insult and even through normal BBB by 
specific receptors [119, 123]. It activates (1) Janus tyrosine 
kinase 2 (JAK-2)-STAT signaling pathways that lead to the 
expression of Bcl-2 [125, 126], (2) extracellular-regulat-
ed kinase (ERK) and Protein kinase B (PKB), (3) nuclear 
factor-kappa B (NF-κB) [123, 124]. Recently, carbamylat-
ed erythropoietin has been reported as a neuroprotective 
agent that acts via the CD131/GDNF/AKT pathway in mice 
[126]. It does not bind to EPO-R and does not stimulate 
erythropoiesis nor activates JAK-2 pathways [127].

8.6. Free Radical Scavengers

Free radical scavengers such as polyethylene glycol 
(PEG)-conjugated SOD (PEG-SOD), 4-hydroxy- 2,2,6,6-te-
tramethylpiperidine-1-oxyl (Tempol), trans-2,3',4, 5'-tet-
rahydroxystilbene (hydroxystilbene oxyresveratrol) and 
disodium 2,4-disulfophenyl-N-tert-butylnitrone (NXY-
059) have been used as neuroprotectants in various ani-
mal studies [128-133]. PEG-SOD, tempol, and hydroxystil-
bene oxyresveratrol did not show significant effects on 
neuropathologies [129, 130, 134]. NXY-059 as a scavenger 
of reactive oxygen species (ROS) has been used in rats and 
humans [128, 132, 133], and has been shown to exert an-
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tioxidant effects and vascular protective properties [128]. 
NXY-059 has been shown to be effective in the prevention 
of the salicylate oxidation [135]. Effectiveness of this drug 
is due to the entrapment of free radicals [135]. Around 80-
90% of NXY-059 is eliminated unchanged through renal 
route. The elimination half-life is 2-4 hours in patients with 
normal kidney function [136].

8.7. Immunosuppressant drugs

Immunosuppressant drugs such as cyclosporine A (CsA) 
and particulaly tacrolimus (FK506) are recognized as neu-
roprotective agents in ischemic brain injuries and have 
been widely used in animal models [137-141]. Both cyclo-
sporine and tacrolimus are calcineurin inhibitors. These 
agents bind to immunophilins and block the clacineurin 
that leads to reduced interleukin 2 production and T cells 
[142]. Tacrolimus is also a macrolid antibiotic and has 
more potency than cyclosporin with a different mode of 
immuphilin receptor inhibition [142]. Both drugs are sub-
strate for cytochrome P450 3A4 and have potential renal 
and hepatic side effects [143].

 One of the neuroprotective mechanisms of is blockage 
of extracellular signal-regulated kinases 1 and 2 (ERK1/2) 
[144]. ERK1 and 2 have pro-apoptotic properties and ex-
pression of these molecules occurs following the ischemic 
state [144]. FK506 inhibits calcineurin activity and nitric 
oxide (NO) production [140, 144]. Another mechanism 
of FK506 action is a reduction in the level of tumor necro-
sis factor-alpha (TNF-α) and IL-1beta [141] but it did not 
show anti-caspase-3 activity [145].

8.8. N-acetyl-L-cysteine (NAC)

NAC is an antidote for paracetamol toxicity and a thi-
ol-containing drug with antioxidant, anti-inflammatory 
and free radical scavenging activity [146]. It is a safe med-
ication with direct effects on glutathione synthesis. The 
main indication of NAC is in chronic bronchitis with hy-
persecretion of mucus, cystic fibrosis, acute respiratory 
distress syndrome and pulmonary oxygen toxicity. It can 
also attenuate brain oxidative stress. Infusion of NAC leads 
to the presence of the drug by up to 6 hours in plasma [146, 
147]. 

Mechanisms of action of NAC as a neuroprotective agent 
are as below:

1) Increases the level of glutathione in the cells to prevent 
oxidative stress [146].
2) Inhibition of Nitric oxide synthase (NOS) and increases 
tissue oxygenation [148, 149].
3) Scavenging of the superoxide anions and ROS [149, 150].
4) Inhibition of endothelial apoptosis and NF-κB, TNF-α 
activation [151, 152].

NAC can cross BBB, depending on the route of adminis-
tration and the dosage of the drug [148]. The decrease of 
cerebral vasospasm is reported in a human patients and 
animal models with Subarachnoid hemorrhage after ad-
ministration of NAC [148, 153, 154]. The beneficial effect of 

NAC has been reported in acute ischemic and hemorrhag-
ic stroke and TBI in rodents [149, 152-155].

8.9.  β-Blockers

Beta-blockers are a class of drugs that are widely used to 
reduce blood pressure and control cardiac arrhythmias 
through blockage of β-adrenergic receptors. [156]. Beta 
blockers are water- and fat-soluble. Water-soluble β-block-
ers have longer half lives and have renal elimination while 
fat-soluble ones have shorter half lives and are metabo-
lized by the liver. This class of drugs have a good absorb-
tion via oral route. These drugs reduce cardiovascular 
morbidity and mortality and induce vasodilation through 
nitric oxide and receptor blockage [157].

 The benefit of beta-blockers in TBI has been investigated 
in animal models and human patients [158-164]. Mecha-
nisms of action of beta-blockers as neuroprotective agents 
are inhibition of apoptosis, attenuation of TNF-α and in-
terleukin-1β expression and improvement the cortical mi-
crovascular perfusion [158].

8.10. COX-2 selective inhibitors

COX-2 selective inhibitors are blocking agents of the cy-
clooxygenase-2 enzyme, and are classified as a member of 
nonsteroidal anti-inflammatory drugs. COX-2 stimulates 
inflammation by converting arachidonic acid to prosta-
glandin [165] and activating NMDA receptors [166]. COX-2 
has a significant excitotoxicity role through overproduc-
tion of prostaglandins[167]. 

 All COX-2 inhibitors are metabolized by cytochrome 
P450 enzymes. They are used for the treatment of osteoar-
thritis, rheumatoid arthritis and painful conditions. These 
drugs have a lower risk of developing gastrointestinal side 
effects compared with non-selective COX inhibitors. COX-
2 inhibitors have also protective activity against neurode-
generative diseases [168, 169]. 

 Several animal studies have been performed on the effect 
of various COX-2 inhibitors such as valdecoxib, celecoxib, 
some natural products and NS-398 [170-172]. The use of 
COX-2 antagonists was associated with an increase in glu-
tathione and superoxide dismutase levels, reduction in the 
levels of TNF-α, IL-1β and NF-κB [170], and blockage of 
NMDA receptors [167].

8.11. Curcumin

Curcumin is a natural polyphenolic compound with nu-
merous medicinal properties [173]. Curcumin is a hydro-
phobic product with poor oral absorption and bioavail-
ability. Commercial curcumin known as curcuminoids 
is composed of curcumin, demethoxycurcumin and bis-
demethoxycurcumin [174]. Curcumin has two keto and 
enol tautomeric forms that affect the stability of the mol-
ecule [175].

 Curcumin has anti-inflammatory [176-180], antioxidant 
[178, 181-185], immunomodulatory [186-189], anti-tu-
mor and chemo-sensitizing [190-196], analgesic [197], li-
pid-modifying [198-202] and hepatoprotective [203-205] 
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activities. Curcumin has been used for the treatment of 
TBI, ischemic and hemorrhagic stroke in animal models 
[206-209]. Various mechanisms have been suggested for 
the neuroprotective effects of curcumin. Zhu and col-
leagues reported that curcumin is an anti-inflammatory 
via “inhibition of Toll-like receptor 4 (TLR4) / Myeloid 
differentiation primary response gene 88 (MyD88) / NF-
κB signaling pathway” [206] in TBI. Curcumin can inhib-
it  inflammatory processes in hemorrhagic strokes by a 
reduction in the expression of matrix metalloproteinases 
(MMPs), attenuation of IL-1 and inhibition of p38 mito-
gen-activated protein kinases (p38MAPK)/protein kinase 
C (PKC) pathways [207, 208]. Another mechanism of cur-
cumin’s action in ischemic brain injuries is alteration of 
protein kinase B (Akt)/nuclear factorerythroid 2-related 
factor 2 (Nrf2) and reduction of oxidative damage [209]. 

 Other neuroprotective agents such as corticosteroids 
[210, 211], barbiturates [212], ketamine [213], citicoline 

COX-2: Cyclooxygenase-2

IL-1β: Interleukin-1β

IL-6: Interleukin-6

MMP: Matrix metallopeptidase

NF-kB: Nuclear factor-κB

NMDA: N-methyl-D-aspartate receptor

TBI : Traumatic Brain Injuries

TNF-α: Tumor Necrotic factor α

References/Study Neuroprotective Agent Clinical use Mechanism of action

[210, 211] corticosteroids
Subarachnoid 

hemorrhage, ischemic 
stroke

Blocking of NF-kB, inhibiton of COX-2, expression of 
Mitogen-activated protein kinase phosphatase I

[212] barbiturates Intracranial aneurysm
Reduction of intracranial pressure, Supression of Cerebral 

metabolism

[213] ketamine Intracranial aneurysm Inhibition of NMDA receptors

[214, 215] citicoline Stroke and TBI
Increase activity of glutathione reductase, lipid peroxidation  

attenuation, increase of sirtuin 1 expression

[216-219] growth factors Stroke and TBI
Inhibition in calcium incease, antiapoptosis, free radical 

scavengers

[220, 221] minocycline Stroke and TBI
Supression of IL-1β, IL-6 and TNF-α, Supression of MMP 

activity

[222, 225] mannitol Stroke and TBI Free radical scavenger, Improve of brain microcirculation

Table 2 Other potential neuroprotectants in the intensive care unit.

Journal of Pharmacopuncture 2018;21(4):226-240



http://www.journal.ac 233

[214, 215], growth factors [216-219], minocycline [220, 
221] and mannitol [222] with their mechanisms of action 
are summarized in Table 2.

9. Conclusion

Neurological complications continue to be a major prob-
lem in patients admitted to ICU and significantly affect 
clinical outcomes as well as the length of ICU stay. Over 
the decades and centuries, numerous neuroprotective 
agents have been introduced to improve the care of crit-
ically ill patients. Despite the usefulness of these agents, 
none of them was really effective in the management of pa-
tients admitted to the ICU. The beneficial impact of various 
neuroprotective agents has been shown in animal models. 
Inhibition of damaging signaling pathways to the neurons 
such as inflammation, oxidative stress and apoptosis is the 
major molecular mechanism of neuroprotective agents. 
Use of neuroprotective agents in the ICU should be sup-
ported by compelling evidence on the improvement of 
clinical outcome and rapid recovery in the patients. How-
ever, the efficacy of agents discussed above is controversial 
in the light of findings of clinical trials. Some clinical trials 
have shown favorable clinical outcomes after the use of 
magnesium in patients with stroke. Melatonin and eryth-
ropoietin may be regarded as effective neuroprotective 
agents with anti-inflammatory and anti-apoptotic proper-
ties. Further studies in large populations of ICU patients 
should be performed to evaluate the neuroprotective ef-
fects of various agents such as curcumin, erythropoietin, 
magnesium and melatonin.
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