• 제목/요약/키워드: Network Pharmacology

Search Result 115, Processing Time 0.027 seconds

The Development of Herbal Medicine Network Analysis System

  • Ho Jang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.113-121
    • /
    • 2023
  • Network pharmacology in traditional Korean and Chinese medicine studies the molecular and biological aspects of herbal medicine using computational methods. Despite variations in databases, techniques, and criteria, most studies follow similar steps: constructing herb-compound networks, compound-target networks, and target interpretation. To ensure efficient and consistent analysis in herbal medicine network pharmacology, we designed and implemented a common analysis pipeline. We showed its reliability with existing databases. The proposed system has a potential to facilitate network pharmacology analysis in traditional medicine, ensuring consistent analysis of various herbal medicines.

Systems pharmacology approaches in herbal medicine research: a brief review

  • Lee, Myunggyo;Shin, Hyejin;Park, Musun;Kim, Aeyung;Cha, Seongwon;Lee, Haeseung
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.417-428
    • /
    • 2022
  • Herbal medicine, a multi-component treatment, has been extensively practiced for treating various symptoms and diseases. However, its molecular mechanism of action on the human body is unknown, which impedes the development and application of herbal medicine. To address this, recent studies are increasingly adopting systems pharmacology, which interprets pharmacological effects of drugs from consequences of the interaction networks that drugs might have. Most conventional network-based approaches collect associations of herb-compound, compound-target, and target-disease from individual databases, respectively, and construct an integrated network of herb-compound-target-disease to study the complex mechanisms underlying herbal treatment. More recently, rapid advances in high-throughput omics technology have led numerous studies to exploring gene expression profiles induced by herbal treatments to elicit information on direct associations between herbs and genes at the genome-wide scale. In this review, we summarize key databases and computational methods utilized in systems pharmacology for studying herbal medicine. We also highlight recent studies that identify modes of action or novel indications of herbal medicine by harnessing drug-induced transcriptome data.

New Approach for Herbal Formula Research: Network Pharmacology (방제 연구를 위한 새로운 접근: 네트워크 약리학)

  • Han, Sang Yong;Kim, Yun Kyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.385-396
    • /
    • 2016
  • It is a fact that the existing pharmacological research method is difficult to explain the effect and mechanism of action of herbal formula of Korean medicine. We are now very pleased with the development of modern science and the development of a methodology for studying herbal formula characterized by network targets and multi-component therapeutics over the human body. In this review, systems pharmacology or network pharmacology is demonstrated how these are applied to explain the effectiveness of herbal medicine. The post-genomic era provides a unique opportunity for the two fields to understand and benefit from each other. In particular, recent research trends, research methodology, useful databases and results of research on herbal formula are introduced. China already has a policy of scientific development of traditional chinese medicine (TCM) and the development of Chinese medicine industry with a focus on herbal formula research at national level, and in Korea, it is urgent to support and nurture the methodology appropriate to the characteristics of the herbal formula in order to study the safety and efficacy of Korean medicine.

Silibinin Inhibits LPS-Induced Macrophage Activation by Blocking p38 MAPK in RAW 264.7 Cells

  • Youn, Cha Kyung;Park, Seon Joo;Lee, Min Young;Cha, Man Jin;Kim, Ok Hyeun;You, Ho Jin;Chang, In Youp;Yoon, Sang Pil;Jeon, Young Jin
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.258-263
    • /
    • 2013
  • We demonstrate herein that silibinin, a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), inhibits LPS-induced activation of macrophages and production of nitric oxide (NO) in RAW 264.7 cells. Western blot analysis showed silibinin inhibits iNOS gene expression. RT-PCR showed that silibinin inhibits iNOS, TNF-${\alpha}$, and $IL1{\beta}$. We also showed that silibinin strongly inhibits p38 MAPK phosphorylation, whereas the ERK1/2 and JNK pathways are not inhibited. The p38 MAPK inhibitor abrogated the LPS-induced nitrite production, whereas the MEK-1 inhibitor did not affect the nitrite production. A molecular modeling study proposed a binding pose for silibinin targeting the ATP binding site of p38 MAPK (1OUK). Collectively, this series of experiments indicates that silibinin inhibits macrophage activation by blocking p38 MAPK signaling.

Mechanism of Wenshen Xuanbi Decoction in the treatment of osteoarthritis based on network pharmacology and experimental verification

  • Hankun You;Siyuan Song;Deren Liu;Tongsen Ren;Song Jiang Yin;Peng Wu;Jun Mao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.59-72
    • /
    • 2024
  • To investigate the mechanism of Wenshen Xuanbi Decoction (WSXB) in treating osteoarthritis (OA) via network pharmacology, bioinformatics analysis, and experimental verification. The active components and prediction targets of WSXB were obtained from the TCMSP database and Swiss Target Prediction website, respectively. OA-related genes were retrieved from GeneCards and OMIM databases. Protein-protein interaction and functional enrichment analyses were performed, resulting in the construction of the Herb-Component-Target network. In addition, differential genes of OA were obtained from the GEO database to verify the potential mechanism of WSXB in OA treatment. Subsequently, potential active components were subjected to molecular verification with the hub targets. Finally, we selected the most crucial hub targets and pathways for experimental verification in vitro. The active components in the study included quercetin, linolenic acid, methyl linoleate, isobergapten, and beta-sitosterol. AKT1, tumor necrosis factor (TNF), interleukin (IL)-6, GAPDH, and CTNNB1 were identified as the most crucial hub targets. Molecular docking revealed that the active components and hub targets exhibited strong binding energy. Experimental verification demonstrated that the mRNA and protein expression levels of IL-6, IL-17, and TNF in the WSXB group were lower than those in the KOA group (p < 0.05). WSXB exhibits a chondroprotective effect on OA and delays disease progression. The mechanism is potentially related to the suppression of IL-17 and TNF signaling pathways and the down-regulation of IL-6.

Usefulness of Network Pharmacology Analysis in Exploring Herbal Medicine Resources for the Treatment of Dementia (치매 치료를 위한 한약 자원 탐색에서 네트워크 약리학 분석법의 유용성)

  • Suin Cho
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Objectives: Dementia is a disease in which a person maintains a normal intellectual level during the growth period, but has acquired cognitive impairment and personality change. In this study, we tried to check whether the network pharmacology analysis method is useful in the search for herbal medicine resources for the treatment of dementia. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database is a database frequently used in Chinese medicine research. We used the TCMSP to identify herbal medicines and their molecular targets that can be used for dementia by using network pharmacology research methods. Results: It was possible to select 28 types of components that are expected to be active by applying them to the living body, and 75 types of targets that these components act on were secured. In addition, 16 kinds of drugs were identified by checking the drugs containing 28 kinds of ingredients, and it was found that Radix Salviae contained 2 kinds of the selected 28 kinds of ingredients. Conclusions: Through this study, we were able to identify ingredients, drugs, and targets that can be used for basic and clinical research on dementia.

Comparison of network pharmacology based analysis results according to changes in principal herb in Sagunja-tang (사군자탕(四君子湯)에서 군약(君藥)의 변화에 따른 네트워크 약리학적 분석 결과 비교)

  • Lee, Byoungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.189-197
    • /
    • 2019
  • Objectives : The purpose of this study was to confirm whether Codonopsis Radix(CR) could be used in the same way for expected indications or diseases of adaptation instead of Ginseng Radix(GR), which acts as a principal herb in Sagunja-tang. Methods : The Traditional Chinese Medicine Systems pharmacology(TCMSP), a database for the study of systems biology related to Chinese medicine, screened potential active compounds in each quartet. By searching for all the proteins that each compound provides, the target of Sagunja-tang with GR(GRST) and the target of Sagunja-tang with CR(CRST) were compared using the network analysis method, and the top ranked target of each serving was selected. Results : Through TCMSP, a Chinese medicine database, the potential effective ingredients of GRST or CRST screened, and the target proteins related to these substances were found to be the most affected by Glycyrrhizae Radix et Rhizome, an herbal medicine mixed in Sagunja-tang, and the target diseases were the same. And the same were found for the target protein, gene and target diseases of GRST and CRST. Conclusions : The prescription with similar composition is likely to have similar network pharmacology analysis results, and the analysis result may be controlled by the herbal medicines which are assumed to be the main function. Therefore, rich and reproducible basic studies is more important because network pharmacological studies can be dominated by data that has been done a lot of previous studies.

Analysis of the Active Compounds and Therapeutic Mechanisms of Yijin-tang on Meniere's Disease Using Network Pharmacology(I) (네트워크 약리학을 활용한 메니에르병에 대한 이진탕(二陳湯)의 활성 성분과 치료 기전 연구(I))

  • SunKyung Jin;Hae-Jeong Nam
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.1
    • /
    • pp.50-63
    • /
    • 2023
  • Objectives : This study used a network pharmacology approach to explore the active compounds and therapeutic mechanisms of Yijin-tang on Meniere's disease. Methods : The active compounds of Yijin-tang were screened via the TCMSP database and their target proteins were screened via the STITCH database. The GeneCard was used to establish the Meniere's disease-related genes. The intersection targets were obtained through Venny 2.1.0. The related protein interaction network was constructed with the STRING database, and topology analysis was performed through CytoNCA. GO biological function analysis and KEGG enrichment analysis for core targets were performed through the ClueGO. Results : Network analysis identified 126 compounds in five herbal medicines of Yijin-tang. Among them, 15 compounds(naringenin, beta-sitosterol, stigmasterol, baicalein, baicalin, calycosin, dihydrocapsaicin, formononetin, glabridin, isorhamnetin, kaempferol, mairin, quercetin, sitosterol, nobiletin) were the key chemicals. The target proteins were 119, and 7 proteins(TNF, CASP9, PARP1, CCL2, CFTR, NOS2, NOS1) were linked to Meniere's disease-related genes. Core genes in this network were TNF, CASP9, and NOS2. GO/KEGG pathway analysis results indicate that these targets are primarily involved in regulating biological processes, such as excitotoxicity, oxidative stress, and apoptosis. Conclusion : Pharmacological network analysis can help to explain the applicability of Yijin-tang on Meniere's disease.

Network pharmacological analysis for exploration of the potential application of Hwangryunhaedok-tang for brain diseases (황련해독탕(黃連解毒湯)의 뇌질환 응용 가능성 탐색을 위한 네트워크 약리학적 분석)

  • Lee, Se-Eun;Lim, Jae-Yu;Chung, Byung-Woo;Lee, Byoungho;Lim, Jung Hwa;Cho, Suin
    • Herbal Formula Science
    • /
    • v.28 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Objectives : To explore the associated potential pathways and molecular targets of Hwangryunhaedok-tang(HHT) by the approaches of network pharmacology and bioinformatics in traditional chinese medicine(TCM). Methods : Hwangryunhaedok-tang constituent drugs(Coptidis Rhizoma, CR; Scutellariae Radix, SR; Phellodendri Cortex, PC; Gardeniae Fructus, GF) and their processing types were searched from TCM systems pharmacology(TCMSP). The databases of TCMSP, Kyoto Encyclopedia of Genes and Genomes(KEGG), MCODE and STRING were used to gather information. The network of bioactive ingredients and target gene was constructed by Cytoscape software(version 3.8). Results : A total of 94 HHT active compounds(CR, 12; SR, 35; PC, 33; GF, 14, respectively) were found, and HHT were identified by TCMSP. Applications of KEGG and MCODE analysis indicates that total of 6 bioactive ingredients in the top 10% ranking were obtained and 32 diseases of HHT were screened. The molecular pathway analysis revealed that HHT exerts cancer, inflammation and cerebrovascular diseases effects by acting on several signaling pathway. In addition, HHT found that three genes(e.g. SPIN1, TRIM25, and APP) correlate with the aforementioned diseases. Conclusions : This study showed that network pharmacology analysis is useful to elucidate the complex mechanisms of action of HHT.

Network pharmacology analysis of Jakyakgamchotang with corydalis tuber for anti-inflammation (작약감초탕 가 현호색의 항염증 기전에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Hongjun Kim;Han-bin Park;Seungho Lee
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • Objectives : The purpose of this study was to investigate the molecular targets and pathways of anti-inflammatory effects of Jakyakgamchotang with corydalis tuber (JC) using network pharmacology. Methods : The compounds in constituent herbal medicines of JC were searched in TCM systems pharmacology (TCMSP). Target gene informations of the components were collected using chemical-target interactions database provided by Pubchem. Afterwards, network analysis between compounds and inflammation-related target genes was performed using cytoscape. Go enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on inflammation-related targets using DAVID database. Results : 70 active compounds related to inflammation were identified, and 295 target genes related to the anti-inflammatory activity of the compound of JC were identified. In the Go biological process DB and KEGG pathway DB, "inflammatory response", "cellular response to lipopolysaccharide", "positive regulation of interleukin-6 production", and "positive regulation of protein kinase B. signaling", "positive regulation of ERK1 and ERK2 cascade", "positive regulation of I-kappaB kinase/NF-kappaB signaling", "negative regulation of apoptotic process", and "PI3K-Akt signaling pathway" were found to be mechanisms related to the anti-inflammatory effects related to the target genes of JC. The main compounds predicted to be involved in the anti-inflammatory effect of JC were quercetin, licochalcone B, (+)-catechin, kaempferol, and emodin. Conclusions : This study provides the molecular targets and potential pathways of JC on inflammation. It can be used as a basic data for using JC for various inflammatory disease in traditional korean medicine clinic.