• Title/Summary/Keyword: Network Function

Search Result 4,595, Processing Time 0.031 seconds

THE CAPABILITY OF PERIODIC NEURAL NETWORK APPROXIMATION

  • Hahm, Nahmwoo;Hong, Bum Il
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this paper, we investigate the possibility of $2{\pi}$-periodic continuous function approximation by periodic neural networks. Using the Riemann sum and the quadrature formula, we show the capability of a periodic neural network approximation.

Force controller of the robot gripper using fuzzy-neural fusion (퍼지-뉴럴 융합을 이용한 로보트 Gripper의 힘 제어기)

  • 임광우;김성현;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.861-865
    • /
    • 1991
  • In general, the fusion of neural network and fuzzy logic theory is based on the fact that neural network and fuzzy logic theory have the common properties that 1) the activation function of a neuron is similar to the membership function of fuzzy variable, and 2) the functions of summation and products of neural network are similar to the Max-Min operator of fuzzy logics. In this paper, a fuzzy-neural network will be proposed and a force controller of the robot gripper, utilizing the fuzzy-neural network, will be presented. The effectiveness of the proposed strategy will be demonstrated by computer simulation.

  • PDF

A SIMULTANEOUS NEURAL NETWORK APPROXIMATION WITH THE SQUASHING FUNCTION

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • In this paper, we actually construct the simultaneous approximation by neural networks to a differentiable function. To do this, we first construct a polynomial approximation using the Fejer sum and then a simultaneous neural network approximation with the squashing activation function. We also give numerical results to support our theory.

The nonlinear function approximation based on the neural network application

  • Sugisaka, Masanori;Itou, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.462-462
    • /
    • 2000
  • In this paper, genetic algorithm (GA) is the technique to search for the optimal structures (i,e., the kind of neural network, the number of hidden neuron, ..) of the neural networks which are used approximating a given nonlinear function, In this paper, we used multi layer feed-forward neural network. The decision method of synapse weights of each neuron in each generation used back-propagation method. In this study, we simulated nonlinear function approximation in the temperature control system.

  • PDF

Analogue-Digital Hybrid Circuit for an Adaptive Fuzzy Network

  • Han, Il-Song
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.838-841
    • /
    • 1993
  • This paper describes a fuzzy network circuit of analogue and digital mixed operation. The circuits are suggested for membership function, MIN function and normalization function using either linear voltage-controlled MOSFET resistance or pulse stream operation. The analogue-digital hybrid fuzzy hardware is extensible to the fuzzy-neural network as its basic configurations are already used in URAN-I of 135,424 synaptic connections.

  • PDF

One Dimensional Optimization using Learning Network

  • Chung, Taishn;Bien, Zeungnam
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.33-39
    • /
    • 1995
  • One dimensional optimization problem is considered, we propose a method to find the global minimum of one-dimensional function with on gradient information but only the finite number of input-output samples. We construct a learning network which has a good learning capability and of which global maximum(or minimum) can be calculated with simple calculation. By teaching this network to approximate the given function with minimal samples, we can get the global minimum of the function. We verify this method using some typical esamples.

  • PDF

Distribution System Reconfiguration Considering Customer and DG Reliability Cost

  • Cho, Sung-Min;Shin, Hee-Sang;Park, Jin-Hyun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.486-492
    • /
    • 2012
  • This paper presents a novel objective function for distribution system reconfiguration for reliability enhancement. When islanding operations of distributed generators is prohibited, faults in the feeder interrupt the operation of distributed generators. For this reason, we include the customer interruption cost as well as the distributed generator interruption cost in the objective function in the network reconfiguration algorithm. The network reconfiguration in which genetic algorithms are used is implemented by MATLAB. The effect of the proposed objective function in the network reconfiguration is analyzed and compared with existing objective functions through case studies. The network reconfiguration considering the proposed objective function is suitable for a distribution system that has a high penetration of distributed generators.

A study on fuzzy-neural control of nonlinear system

  • Oh, Jae-Chul;Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.36-39
    • /
    • 1996
  • This paper proposes identification and control algorithm of nonlinear systems and the proposed fuzzy-neural network has following characteristics. The network is roughly divided into premise and consequence. The consequence function is nonlinear function which consists of three parameters and the membership function in the premise contains of two parameters. The parameters in premise and consequence are learned by the extended back-propagation algorithm which has a modified form of the generalized delta rule. Simulation results on the identification show that this method is more effective than that of Narendra [3]. The indirect fuzzy-neural control is made of the fuzzy-neural identification and controller. Result on the indirect fuzzy-neural control shows that the proposed fuzzy-neural network can be efficiently applied to nonlinear systems.

  • PDF

The Effect of Hyperparameter Choice on ReLU and SELU Activation Function

  • Kevin, Pratama;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.6 no.4
    • /
    • pp.73-79
    • /
    • 2017
  • The Convolutional Neural Network (CNN) has shown an excellent performance in computer vision task. Applications of CNN include image classification, object detection in images, autonomous driving, etc. This paper will evaluate the performance of CNN model with ReLU and SELU as activation function. The evaluation will be performed on four different choices of hyperparameter which are initialization method, network configuration, optimization technique, and regularization. We did experiment on each choice of hyperparameter and show how it influences the network convergence and test accuracy. In this experiment, we also discover performance improvement when using SELU as activation function over ReLU.

Development of Algorithms for Sorting Peeled Garlic Using Machnie Vison (I) - Comparison of sorting accuracy between Bayes discriminant function and neural network - (기계시각을 이용한 박피 마늘 선별 알고리즘 개발 (I) - 베이즈 판별함수와 신경회로망에 의한 설별 정확도 비교 -)

  • 이상엽;이수희;노상하;배영환
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.325-334
    • /
    • 1999
  • The aim of this study was to present a groundwork for development of a sorting system of peeled garlics using machine vision. Images of various garlic samples such as sound, partially defective, discolored, rotten and un-peeled were obtained with a B/W machine vision system. Sorting factors which were based on normalized histogram and statistical analysis(STEPDISC Method) had good separability for various garlic samples. Bayes discriminant function and neural network sorting algorithms were developed with the sample images and were experimented on various garlic samples. It was showed that garlic samples could be classified by sorting algorithm with average sorting accuracies of 88.4% by Bayes discriminant function and 93.2% by neural network.

  • PDF