• Title/Summary/Keyword: Network Function

Search Result 4,595, Processing Time 0.038 seconds

Intelligent Control by Immune Network Algorithm Based Auto-Weight Function Tuning

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.120.2-120
    • /
    • 2002
  • In this paper auto-tuning scheme of weight function in the neural networks has been suggested by immune algorithm for nonlinear process. A number of structures of the neural networks are considered as learning methods for control system. A general view is provided that they are the special cases of either the membership functions or the modification of network structure in the neural networks. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also. It can provi..

  • PDF

Sliding Mode Control based on Recurrent Neural Network (회귀신경망을 이용한 슬라이딩 모드 제어)

  • 홍경수;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.135-139
    • /
    • 2000
  • This research proposes a nonlinear sliding mode control. The sliding mode control is designed according to Lyapunov function. The equivalent control term is estimated by neural network. To estimate the unknown part in the control law in on-line fashion, A recurrent neural network is given as on-line estimator. The stability of the control system is guaranteed owing to the on-line learning ability of the recurrent neural network. It is certificated through simulation results to be applied to nonlinear system that the function approximation and the proposed control scheme is very effective.

  • PDF

A Production Function for the Organization with Hierarchical Network Queue Structure (계층적(階層的) 네트웍 대기구조(待機構造)를 갖는 조직(組織)의 생산함수(生産函數)에 대한 연구(硏究))

  • Gang, Seok-Hyeon;Kim, Seong-In
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 1986
  • In the organization with a hierarchical network queue structure a production function is derived whose input factors are the numbers of servers at nodes and output is the number of served customers. Its useful properties are investigated. Using this production function, the contributions of servers to the number of served customers are studied. Also given an expected waiting time in the system for each customer, the optimal numbers of servers at nodes are obtained minimizing a cost function.

  • PDF

Optimal Graph Partitioning by Boltzmann Machine (Boltzmann Machine을 이용한 그래프의 최적분할)

  • Lee, Jong-Hee;Kim, Jin-Ho;Park, Heung-Moon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1025-1032
    • /
    • 1990
  • We proposed a neural network energy function for the optimal graph partitioning and its optimization method using Boltzmann Machine. We composed a Boltzmann Machine with the proposed neural network energy function, and the simulation results show that we can obtain an optimal solution with the energy function parameters of A=50, B=5, c=14 and D=10, at the Boltzmann Machine parameters of To=80 and \ulcorner0.07 for a 6-node 3-partition problem. As a result, the proposed energy function and optimization parameters are proved to be feasible for the optimal graph partitioning.

  • PDF

Design of Nonlinear(Sigmoid) Activation Function for Digital Neural Network (Digital 신경회로망을 위한 비선형함수의 구현)

  • Kim, Jin-Tae;Chung, Duck-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.501-503
    • /
    • 1993
  • A circuit of sigmoid function for neural network is designed by using Piecewise Linear (PWL) method. The slope of sigmoid function can be adjusted to 2 and 0.25. Also the circuit presents both sigmoid function and its differential form. The circuits is simulated by using ViewLogic. Theoretical and simulated performance agree with 1.8 percent.

  • PDF

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method

  • Golafshani, Emadaldin M.;Pazouki, Gholamreza
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.419-437
    • /
    • 2018
  • The compressive strength of self-compacting concrete (SCC) containing fly ash (FA) is highly related to its constituents. The principal purpose of this paper is to investigate the efficiency of hybrid fuzzy radial basis function neural network with biogeography-based optimization (FRBFNN-BBO) for predicting the compressive strength of SCC containing FA based on its mix design i.e., cement, fly ash, water, fine aggregate, coarse aggregate, superplasticizer, and age. In this regard, biogeography-based optimization (BBO) is applied for the optimal design of fuzzy radial basis function neural network (FRBFNN) and the proposed model, implemented in a MATLAB environment, is constructed, trained and tested using 338 available sets of data obtained from 24 different published literature sources. Moreover, the artificial neural network and three types of radial basis function neural network models are applied to compare the efficiency of the proposed model. The statistical analysis results strongly showed that the proposed FRBFNN-BBO model has good performance in desirable accuracy for predicting the compressive strength of SCC with fly ash.

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Network Parameters of 6-Pole Dual-Mode Singly Terminated Elliptic Function Filter (6차 단일종단 이중모드 타원응답 필터의 회로망 파라미터 추출에 관한 연구)

  • Lee, Juseop;Uhm, Man-Seok;Yom, In-Bok;Lee, Seong-Pal
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.557-562
    • /
    • 2003
  • An output multiplexer of manifold type is widely used in a recent satellite transponder for its mass and volume reduction. For correct operation, the filters of such a multiplexer must be singly terminated. In this paper, a simple synthesis method of a 6-pole dual-mode singly-terminated filter is described. From the transfer function of the filter, network parameters such as in/output terminations and coupling coefficients are obtained easily without complicated matrix algebra such as orthogonal projection and similarity transformation. Two different-structure filters are taken into consideration and the network parameters of each filter have been extracted from the same transfer function. It is shown that the responses of two filters are same to each other since their network parameters are obtained from the same transfer function. The method described in this paper can be applied to the other degree singly terminated filter.

Optimal Connection Algorithm of Two Kinds of Parts to Pairs using Hopfield Network (Hopfield Network를 이용한 이종 부품 결합의 최적화 알고리즘)

  • 오제휘;차영엽;고경용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.174-179
    • /
    • 1999
  • In this paper, we propose an optimal algorithm for finding the shortest connection of two kinds of parts to pairs. If total part numbers are of size N, then there are order 2ㆍ(N/2)$^{N}$ possible solutions, of which we want the one that minimizes the energy function. The appropriate dynamic rule and parameters used in network are proposed by a new energy function which is minimized when 3-constraints are satisfied. This dynamic nile has three important parameters, an enhancement variable connected to pairs, a normalized distance term and a time variable. The enhancement variable connected to pairs have to a perfect connection of two kinds of parts to pairs. The normalized distance term get rids of a unstable states caused by the change of total part numbers. And the time variable removes the un-optimal connection in the case of distance constraint and the wrong or not connection of two kinds of parts to pairs. First of all, we review the theoretical basis for Hopfield model and present a new energy function. Then, the connection matrix and the offset bias created by a new energy function and used in dynamic nile are shown. Finally, we show examples through computer simulation with 20, 30 and 40 parts and discuss the stability and feasibility of the resultant solutions for the proposed connection algorithm.m.

  • PDF

A Study on Prediction for Top Bead Width using Radial Basis Function Network (방사형기저함수망을 이용한 표면 비드폭 예측에 관한 연구)

  • 손준식;김인주;김일수;김학형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.170-174
    • /
    • 2004
  • Despite the widespread use in the various manufacturing industries, the full automation of the robotic CO$_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this paper, an attempt has been made to develop an Radial basis function network model to predict the weld top-bead width as a function of key process parameters in the robotic CO$_2$ welding. and to compare the developed model and a simple neural network model using two different training algorithms in order to verify performance. of the developed model.

  • PDF