• Title/Summary/Keyword: Network Based Control Systems

Search Result 1,911, Processing Time 0.027 seconds

Performance Analysis of Network-based Data Transmission Protocol between Railway Signaling and SCADA Systems (열차제어시스템과 SCADA 장치간 네트워크 기반 데이터 전송 프로토콜의 성능분석)

  • Hwang, Jong-Gyu;Lee, Jae-Ho;Jo, Hyun-Jeong;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.9
    • /
    • pp.485-490
    • /
    • 2006
  • According to the computerization of railway signaling systems, the interface link between the signaling systems has been replaced by the digital communication channel. At the same time, the importance of the communication link is more pronounced than before. In this paper, new Network-based protocol between railway signaling and SCADA (Supervisory Control and Data Acquisition system) has designed and the overview of designed protocol is briefly represented. And also this paper addresses analysis of newly designed train control systems. Fame error rates of the data transmissions are calculated and compared for the two cases that the CTC (Centralized Traffic Control)/SCADA has an extra data transmission error control (CRC16) besides the inherent error control of the Ethernet and that the CTC/SCADA has no extra data transmission error control. With simulation results it has been verified that the additional error control code contributes to lowering the frame error rate. It will be expected to increase the safety, reliability and efficiency of maintenance of the signaling systems by using the designed protocol for railway signaling system.

Stable Predictive Control of Chaotic Systems Using Self-Recurrent Wavelet Neural Network

  • Yoo Sung Jin;Park Jin Bae;Choi Yoon Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.43-55
    • /
    • 2005
  • In this paper, a predictive control method using self-recurrent wavelet neural network (SRWNN) is proposed for chaotic systems. Since the SRWNN has a self-recurrent mother wavelet layer, it can well attract the complex nonlinear system though the SRWNN has less mother wavelet nodes than the wavelet neural network (WNN). Thus, the SRWNN is used as a model predictor for predicting the dynamic property of chaotic systems. The gradient descent method with the adaptive learning rates is applied to train the parameters of the SRWNN based predictor and controller. The adaptive learning rates are derived from the discrete Lyapunov stability theorem, which are used to guarantee the convergence of the predictive controller. Finally, the chaotic systems are provided to demonstrate the effectiveness of the proposed control strategy.

Real-Time Control of Networked Control Systems via Ethernet

  • Ji Kun;Kim Won-jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.591-600
    • /
    • 2005
  • In this paper, we discuss real-time control of networked control systems (NCSs) and practical issues in the choice of the communication networks for this purpose. An appropriate integration of control systems, real-time environments, and network communication systems allows the optimization of the quality-of-control (QoC) in NCSs. We compare several prevailing network types that may be used in control applications to offer a guideline of choosing a proper network. A real-time operating environment is also presented as an important ingredient of NCS design. To evaluate its feasibility and effectiveness, a real-time NCS containing a ball magnetic levitation (Maglev) setup is implemented via an Ethernet. Based on the experimental results, it is concluded in this paper that real-time control via Ethernet is a practical and feasible solution to NCS design.

Adaptive Neural Network Control for Robot Manipulators

  • Lee, Min-Jung;Choi, Young-Kiu
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.43-50
    • /
    • 2002
  • In the recent years neural networks have fulfilled the promise of providing model-free learning controllers for nonlinear systems; however, it is very difficult to guarantee the stability and robustness of neural network control systems. This paper proposes an adaptive neural network control for robot manipulators based on the radial basis function netwo.k (RBFN). The RBFN is a branch of the neural networks and is mathematically tractable. So we adopt the RBFN to approximate nonlinear robot dynamics. The RBFN generates control input signals based on the Lyapunov stability that is often used in the conventional control schemes. The saturation function is also chosen as an auxiliary controller to guarantee the stability and robustness of the control system under the external disturbances and modeling uncertainties.

  • PDF

Remote Controller Design of networked Control System Using Genetic Algorithm (유전자 알고리즘을 이용한 네트워크 기반 제어 시스템의 원격 제어기 설계)

  • Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.80-88
    • /
    • 2002
  • As many sensors and actuators are used in automated systems, various industrial networks are adopted for digital control system. In order to take advantages of the networking, however, the network implementation should be carefully designed to satisfy real-time requirements considering network delays. This paper presents the implementation scheme of a networked control system via Profibus-DP network. More specifically, the effect of the network delay on the control performance was evaluated on a Profibus-DP testbed, and a GA-based PID tuning algorithm is proposed to design controllers suitable for networked control systems.

Development of Delay Compensator for Network Based Real-time Control Systems (네트워크 기반 실시간 제어 시스템을 위한 지연 보상기 개발)

  • Kim, Seung-Yong;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.82-85
    • /
    • 2004
  • This paper proposes the development of delay compensator to minimize performance degradation caused by time delays in network-based real-time control systems. The delay compensator uses the time-stamp method as a direct delay measuring method to measure time delays generated between network nodes. The delay compensator predicts the network time delays of next period in the views point of time delays and minimizes performance degradation from network through considering predicted time delays. Control output considering network time delays is generated by the defuzzification of probable time delays of next period. The time delays considered in the delay compensator are modeled by using a timed Petri net model. The proposed delay prediction mechanism for the delay compensator is evaluated through some simulation tests by measuring deviation of the predicted delays from simulated delays.

  • PDF

Width Prediction Model and Control System using Neural Network and Fuzzy in Hot Strip Finishing Mills (신경회로망과 퍼지 논리를 이용한 열간 사상압연 폭 예측 모델 및 제어기 개발)

  • Hwang, I-Cheal;Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.296-303
    • /
    • 2007
  • This paper proposes a new width control system composed of an ANWC(Automatic Neural network based Width Control) and a fuzzy-PID controller in hot strip finishing mills which aims at obtaining the desirable width. The ANWC is designed using a neural network based width prediction model to minimize a width variation between the measured width and its target value. Input variables for the neural network model are chosen by using the hypothesis testing. The fuzzy-PlD control system is also designed to obtain the fast looper response and the high width control precision in the finishing mill. It is shown through the field test of the Pohang no. 1 hot strip mill of POSCO that the performance of the width margin is considerably improved by the proposed control schemes.

Establishment of a secure networking between Secure OSs

  • Lim, Jae-Deok;Yu, Joon-Suk;Kim, Jeong-Nyeo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2097-2100
    • /
    • 2003
  • Many studies have been done on secure operating system using secure kernel that has various access control policies for system security. Secure kernel can protect user or system data from unauthorized and/or illegal accesses by applying various access control policies like DAC(Discretionary Access Control), MAC(Mandatory Access Control), RBAC(Role Based Access Control), and so on. But, even if secure operating system is running under various access control policies, network traffic among these secure operating systems can be captured and exposed easily by network monitoring tools like packet sniffer if there is no protection policy for network traffic among secure operating systems. For this reason, protection for data within network traffic is as important as protection for data within local system. In this paper, we propose a secure operating system trusted channel, SOSTC, as a prototype of a simple secure network protocol that can protect network traffic among secure operating systems and can transfer security information of the subject. It is significant that SOSTC can be used to extend a security range of secure operating system to the network environment.

  • PDF

The Design and Implementation of Automatic Control System of Living Environment Based on Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 기반의 생활환경 자동제어 시스템 설계 및 구현)

  • Yun, Ji-Hoon;Moon, Seung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The ubiquitous sensor network technique is widely applied to variety of information fields such as home automations, logistics, traffic controls, public administrations, health and environment monitoring and etc. It is particularly useful in the areas where energy consumption is minimal and where continuous monitoring of the surrounding environments, which generates streams of data, are required. In this study, we have designed and implemented a living environment automatic control system which collects the streams of temperature, humidity, light and noise data of a simulated house setting in real-time fashion, then controls the home environment based on the collected data according to the users favorites. In order to differentiate the proposed system from the currently existing similar system, we have demonstrated not only the feasibility of collecting data using sensor network in the controlled environment but also the ability to control the various household equipments through wireless communications.

Real-Time Centralized Soft Motion Control System for High Speed and Precision Robot Control (고속 정밀 로봇 제어를 위한 실시간 중앙 집중식 소프트 모션 제어 시스템)

  • Jung, Il-Kyun;Kim, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.6
    • /
    • pp.295-301
    • /
    • 2013
  • In this paper, we propose a real-time centralized soft motion control system for high speed and precision robot control. The system engages EtherCAT as high speed industrial motion network to enable force based motion control in real-time and is composed of software-based master controller with PC and slave interface modules. Hard real-time control capacity is essential for high speed and precision robot control. To implement soft based real time control, The soft based master controller is designed using a real time kernel (RTX) and EtherCAT network, and servo processes are located in the master controller for centralized motion control. In the proposed system, slave interface modules just collect and transfer all sensor information of robot to the master controller via the EtherCAT network. It is proven by experimental results that the proposed soft motion control system has real time controllability enough to apply for various robot control systems.